• Title/Summary/Keyword: Differential Difference Amplifier(DDA)

Search Result 7, Processing Time 0.028 seconds

A New PMU (parametric measurement unit) Design with Differential Difference Amplifier (차동 차이 증폭기를 이용한 새로운 파라메터 측정기 (PMU) 설계)

  • An, Kyung-Chan;Kang, Hee-Jin;Park, Chang-Bum;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • This paper describes a new PMU(parametric measurement unit) design technique for automatic test equipment(ATE). Only one DDA(differential difference amplifier) is used to force the test signals to DUT(device under test), while conventional design uses two or more amplifiers to force test signals. Since the proposed technique does not need extra amplifiers in feedback path, the proposed PMU inherently guarantees stable operation. Moreover, to measure the response signals from DUT, proposed technique also adopted only one DDA amplifier as an IA(instrument amplifier), while conventional IA uses 3 amplifiers and several resistors. The DDA adopted two rail-to-rail differential input stages to handle full-range differential signals. Gain enhancement technique is used in folded-cascode type DDA to get open loop gain of 100 dB. Proposed PMU design enables accurate and stable operation with smaller hardware and lower power consumption. This PMU is implemented with 0.18 um CMOS process and supply voltage is 1.8 V. Input ranges for each force mode are 0.25~1.55 V at voltage force and 0.9~0.935 V at current force mode.

Implementation of a High Speed Comparator for High Speed Automatic Test Equipment (고속 자동 테스트 장비용 비교기 구현)

  • Cho, In-Su;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • This paper describes the implementation of high speed comparator for the ATE (automatic test equipment) system. The comparator block is composed of continuous comparator, differential difference amplifier(DDA) and output stage. For the wide input dynamic range of 0V to 5V, and for the high speed operation (1~800MHz), high speed rail-to-rail amplifier is used in the first stage. And hysteresis circuits, pre-amp and latch are followed for high speed operation. To measure the difference of output signals between the two devices under test (DUTs), a DDA is applied because it can detect the differences of both common signals and differential signals. This comparator chip was implemented with $0.18{\mu}m$ BCDMOS process and can compare the signal difference of 5mV up to the frequency range of 800 MHz. The chip area of the comparator is $620{\mu}m{\times}830{\mu}m$.

Potentiostat circuits for amperometric sensor (전류법 기반 센서의 정전압 분극 장치 회로)

  • Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • A simple and new CMOS potentiostat circuit for amperometric sensor is described. To maintain a constant potential between the reference and working electrodes, only one differential difference amplifier (DDA) is needed in proposed design, while conventional potentiosatat requires at least 2 operational amplifiers and 2 resistors, or more than 3 operational amplifiers and 4 resistors for low voltage CMOS integrated potentiostat. The DDA with rail-to-rail design not only enables the full range operation to supply voltage but also provides simple potentiostat system with small hardwares and low power consumption.

Design of High-Speed Comparators for High-Speed Automatic Test Equipment

  • Yoon, Byunghun;Lim, Shin-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.291-296
    • /
    • 2015
  • This paper describes the design of a high-speed comparator for high-speed automatic test equipment (ATE). The normal comparator block, which compares the detected signal from the device under test (DUT) to the reference signal from an internal digital-to-analog converter (DAC), is composed of a rail-to-rail first pre-amplifier, a hysteresis amplifier, and a third pre-amplifier and latch for high-speed operation. The proposed continuous comparator handles high-frequency signals up to 800MHz and a wide range of input signals (0~5V). Also, to compare the differences of both common signals and differential signals between two DUTs, the proposed differential mode comparator exploits one differential difference amplifier (DDA) as a pre-amplifier in the comparator, while a conventional differential comparator uses three op-amps as a pre-amplifier. The chip was implemented with $0.18{\mu}m$ Bipolar CMOS DEMOS (BCDMOS) technology, can compare signal differences of 5mV, and operates in a frequency range up to 800MHz. The chip area is $0.514mm^2$.

A Chip Design of Body Composition Analyzer (체성분 분석용 칩 설계)

  • Bae, Sung-Hoon;Moon, Byoung-Sam;Lim, Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.26-34
    • /
    • 2007
  • This Paper describes a chip design technique for body composition analyzer based on the BIA (Bioelectrical Impedance Analysis) method. All the functions of signal forcing circuits to the body, signal detecting circuits from the body, Micom, SRAM and EEPROMS are integrated in one chip. Especially, multi-frequency detecting method can be applied with selective band pass filter (BPF), which is designed in weak inversion region for low power consumption. In addition new full wave rectifier (FWR) is also proposed with differential difference amplifier (DDA) for high performance (small die area low power consumption, rail-to-rail output swing). The prototype chip is implemented with 0.35um CMOS technology and shows the power dissipation of 6 mW at the supply voltage of 3.3V. The die area of prototype chip is $5mm\times5mm$.

A Design of Full-wave Rectifier for Measurement Instrument (계측기용 새로운 전파정류 회로 설계)

  • Bae Sung-Hoon;Lim Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.53-59
    • /
    • 2006
  • This paper describes the new design technique of full wave rectifier (FWR) for precise measurement instrument and the chip implementation of this FWR circuit with measurement results. Conventional circuits have some problems of complex design and limited output range( $VDD/2{\sim}VLIIV1IT+$). Proposed FWR circuit was simply designed with two 2x1 MUXs, one high speed comparator, and one differential difference amplifier(DDA). One rail-to-rail differential difference amplifier(DDA) performs the DC level shifting to VSS and 2X amplification simultaneously, and enables the full range ($Vss{\sim}VDD$) operation. The proposed FWR circuits shows more than 50% reduction of chip area and power consumption compared to conventional one. Proposed circuit was implemented with 0.35um 1-poly 2-metal CMOS process. Core size is $150um{\times}450um$ and power dissipation is 840uW with 3.3V single supply.

Design of a Continuous-Time Filter Using the Modified Chebyshev Function and DDA (개선된 Chebyshev 함수와 DDA를 이용한 연속시간 필터 설계)

  • 최석우;윤창훈;김동용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1572-1580
    • /
    • 1995
  • In this paper, a modified Chebyshev low-pass filter function is proposed. The modified Chebyshev filter function exhibits ripples diminishing toward .omega. = 0 in the passband. So, the modified filter function is realizable in the passive doubly-terminated ladder network for the order n even or odd, thus lending itself amenable to active RC or switched capacitor filters through the simulation techniques. Besides the passive doubly-terminated ladder realizability, lower pole-Q values of the modified function are accountable for improved phase and delay characteristics, as compared to classical function. We have designed the 6th order passive doubly-terminated network using the modified function. And then a continuous-time DDA(Differential Difference Amplifier) filter, which has no matching requirement, is realized by leap-frog simulation technique for fabrication. In the HSPICE simulation results, we confirmed that the designed continuous-time DDA filter characteristics are agreement with the passive filter.

  • PDF