• Title/Summary/Keyword: Difference equations

Search Result 1,391, Processing Time 0.027 seconds

PRECONDITIONING $C^1$-QUADRATIC SPLINE COLLOCATION METHOD OF ELLIPTIC EQUATIONS BY FINITE DIFFERENCE METHOD

  • Woo, Gyung-Soo;Kim, Seok-Chan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.17-27
    • /
    • 2001
  • We discuss a finite difference preconditioner for the$C^1$ Lagrance quadratic spline collocation method for a uniformly elliptic operator with homogeneous Dirichlet boundary conditions. Using the generalized field of values argument, we analyzed eigenvalues of the matrix preconditioned by the matrix corresponding to a finite difference operator with zero boundary condition.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF FORCED NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Liu, Yuji;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.37-51
    • /
    • 2004
  • In this paper, we consider the asymptotic behavior of solutions of the forced nonlinear neutral difference equation $\Delta[x(n)-\sumpi(n)x(n-k_i)]+\sumqj(n)f(x(n-\iota_j))=r(n)$ with sign changing coefficients. Some sufficient conditions for every solution of (*) to tend to zero are established. The results extend and improve some known theorems in literature.

BOUNDED OSCILLATION OF SECOND ORDER UNSTABLE NEUTRAL TYPE DIFFERENCE EQUATIONS

  • Thandapani, E.;Arul, R.;Raja, P.S.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.79-90
    • /
    • 2004
  • In this paper the authors present sufficient conditions for all bounded solutions of the second order neutral difference equation ${\Delta}^2(y_n\;-\;py_{n-{\kappa}})\;-\;q_nf(y_{n-e})\;=\;0,\;n\;{\in}\;N$ to be oscillatory. Examples are provided to illustrate the results.

OSCILLATORY OF UNSTABLE TYPE SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Ping, Bi;Dong, Wenlei
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.87-99
    • /
    • 2002
  • We consider the problem of oscillation and nonoscillation solutions for unstable type second-order neutral difference equation : $\Delta^2(x(n))-p(n)x(n-\tau))=q(n)x(g(n))$. (1) In this paper, we obtain some conditions for the bounded solutions of Eq(1) to be oscillatory and for the existence of the nonoscillatory solutions.

L^INFINITY ERROR ESTIMATES FOR FINITE DIFFERENCE SCHEMES FOR GENERALIZED CAHN-HILLIARD AND KURAMOTO-SIVASHINSKY EQUATIONS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.571-579
    • /
    • 2007
  • Finite difference schemes are considered for a generalization of the Cahn-Hilliard equation with Neumann boundary conditions and the Kuramoto-Sivashinsky equation with a periodic boundary condition, which is of the type $ut+\frac{{\partial}^2} {{\partial}x^2}\;g\;(u,\;u_x,\;u_{xx})=f(u,\;u_x,\;u_{xx})$. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained using the extended Lax-Richtmyer equivalence theorem.

Positive Solutions for Three-point Boundary Value Problem of Nonlinear Fractional q-difference Equation

  • Yang, Wengui
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.419-430
    • /
    • 2016
  • In this paper, we investigate the existence and uniqueness of positive solutions for three-point boundary value problem of nonlinear fractional q-difference equation. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, two examples are presented to illustrate the main results.

A NOTE ON MEROMORPHIC SOLUTIONS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Qi, Xiaoguang;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.597-607
    • /
    • 2019
  • In this article, we consider properties of transcendental meromorphic solutions of the complex differential-difference equation $$P_n(z)f^{(n)}(2+{\eta}_n)+{\cdots}+P_1(z)f^{\prime}(z+{\eta}_1)+P_0(z)f(z+{\eta}_0)=0$$, and its non-homogeneous equation. Our results extend earlier results by Liu et al. [9].

ON MEROMORPHIC SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS OF FIRST ORDER IN SEVERAL COMPLEX VARIABLES

  • Qibin Cheng;Yezhou Li;Zhixue Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.425-441
    • /
    • 2023
  • This paper is concerned with the value distribution for meromorphic solutions f of a class of nonlinear partial differential-difference equation of first order with small coefficients. We show that such solutions f are uniquely determined by the poles of f and the zeros of f - c, f - d (counting multiplicities) for two distinct small functions c, d.

Transformation of Irregular Waves Propagating through Slit Caisson (슬릿 케이슨을 통과하는 불규칙파의 변형)

  • Min, Hyun-Seong;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.159-162
    • /
    • 2007
  • The numerical efforts are presented for investigation of irregular waves passing a slit cassion and a warock block breakwater. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-\varepsilon$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method(VOF) is employed. Numerical predictions of reflection and transmission coefficients are compared with those of the warock block breakwater with the slit caisson. Energy dissipation and seawater exchange rates of the slit caisson are better than those of the warock block breakwater.

  • PDF