ON ASYMPTOTIC BEHAVIOUR OF THE DIFFERENCE EQUATION $X_{N+l}$ = $\alpha$ =+$\frac{X_{n-1^P}}{X_n^P}$

  • El-Owaidy, H.M. (Mathematics Department, Faculty of Science, Al-Azhar University) ;
  • Ahmed, A.M. (Mathematics Department, Faculty of Science, Al-Azhar University) ;
  • Mousa, M.S. (Ajman University of Science and Technology)
  • Published : 2003.05.01

Abstract

In this Paper, we investigate local stability, oscillation and bounde-ness character of positive solutions of the difference equation $X_{N+l}$ = $\alpha$ + ( $X_{N-1}$$^{P/)}$( $X_{N}$$^{P}$), n = 0, 1, … under specified conditions.s.tions.s.

Keywords

References

  1. J. Math.Anal.Appl. v.233 On the recurisive sequence $x_{n+1}=\alpha+ {x_{n-1}}{x_n}$ A.M..Amleh;E.A.Grove;D.A.Georgiou;G. Ladas
  2. Math.Sci.Res.Hot-Line v.4 no.2 On the recursive sequence $y_n+1=(\alpha+βy_n-1)/(Υ+y_n)$ C.Gibbons;M.Kulenovic;G.Ladas
  3. Kluwer Academic Publishers Clobal Behavior of Nonlinear Difference Equations of Higher Order with Applications V. L. Kocic;G. Ladas
  4. J.Math.Anal.Appl. v.173 On the rational recursive sequences V.L.Kocic;G. Ladas;I.Rodrigues
  5. J.Math.Anal.Appl. v.251 On the recursive sequence$y_n+1=(p+y_n-1)/(qy_n+y_n-1)$ W.Kosmala;M.Kulenovic;G. Ladas;C.Teixeira
  6. Journal of Applied Mathematics and computing v.9 no.1 Oscillatory of unstable type second-order neutral difference equations Z.Zhang;B.Ping;W.Dong
  7. Journal of Applied Mathematics and computing(old:KJCAM) v.7 no.3 oscillations for even-order neutral difference equations Z.Zhou;J.Yu;G.Lei