• Title/Summary/Keyword: Dietary selenium

Search Result 127, Processing Time 0.023 seconds

Increasing sperm production and improving cryosurvival of semen in aged Thai native roosters as affected by selenium supplementation

  • Supakorn Authaida;Ruthaiporn Ratchamak;Wuttigrai Boonkum;Vibuntita Chankitisakul
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1647-1654
    • /
    • 2023
  • Objective: Aging roosters typically exhibit subfertility with decreasing semen quality, furthermore Thai native roosters reared in rural areas are raised for a longer duration than their usual lifespan. The present study therefore aimed to assess the effect of selenium supplementation as an antioxidative substance in diets to improve the semen cryopreservation of aged roosters. Methods: Semen samples were collected from young (n = 20) and aged (n = 20) Thai native roosters (Pradu Hang Dum) at 36 and 105 weeks of age when starting the experiment, respectively. They were fed diets either non-supplemented or supplemented with selenium (0.75 ppm). Fresh semen quality and lipid peroxidation of fresh semen was evaluated before cryopreservation using the traditional liquid nitrogen vapor method. Post-thaw sperm quality and fertility potential were determined. Results: Advancing age is unrelated to decreasing fresh semen quality (p>0.05). However, lipid peroxidation in rooster semen depended on age, and the malondialdehyde (MDA) concentration increased in aged roosters (p<0.05). Selenium supplementation in diets significantly decreased the MDA concentration and increased the sperm concentration (p<0.05). In contrast, cryopreserved semen was affected by advancing rooster age, and selenium influenced sperm quality (p<0.05). Younger roosters had higher post-thaw sperm quality and fertility potential than aged roosters (p<0.05). Likewise, diet selenium supplements improved post-thaw sperm quality and fertility compared with the non-supplement group. Conclusion: Rooster's age does not influence the rooster sperm quality of fresh semen, while sperm cryotolerance and fertility were greater in young roosters than in aged roosters. However, sperm of aged roosters could be improved by dietary selenium supplementation.

Effect of Maternal Selenium Nutrition on pulmonary Selenium, Glutathione Peroxidase, and Phospholipid Levels in Neonatal Rats

  • Kim, Hye-Yung
    • Journal of Nutrition and Health
    • /
    • v.27 no.9
    • /
    • pp.940-948
    • /
    • 1994
  • The present study was designed to determine if prenatal and postnatal Se nutriture affects Se concentration, glutathione peroxidase(GSHPx) activity and phospholipid distribution of the neonatal rat lung. Female SD rats were bred and fed a semipurified Se-deficient(0.04ppm, Se-) or a Se-adequate(0.5ppm, Se+) diet through pregnancy and lactation. On d 2 of lactation, maternal dietary Se had no significant effect on pulmonary Se concentration of pups. On d 16 of lactation, mean milk Se concentration in Se- dams was significantly lower than that in Se+ dams. Milk Se concentration was reflected on lung Se concentration and GSHPx activity of d 16 pups, which were dramatically decreased in Se- pups. In addition, pulmonary disaturated phosphatidyl choline/total phosphatidyl choline ratio was also significantly decreased in Se- pups, implying impaired function of pulmonary surfactant. These data indicate that adequate Se nutrition is important in the maturation of neonatal rat lungs.

  • PDF

The Effect of Dietary Selenium Source and Vitamin E Levels on Performance of Male Broilers

  • Choct, M.;Naylor, A.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.1000-1006
    • /
    • 2004
  • Selenium and vitamin E are micronutrients essential for normal health and maintenance in poultry. They are necessary in preventing free radical damage to phospholipid membranes, enzymes and other important molecules. Two experiments were conducted in a semi-commercial environment to examine the effect of Se source and vitamin E level in diet on broiler performance and meat quality. Increasing vitamin E from 50 IU to 100 IU did not affect growth performance of broilers although the 24 h drip-loss was tended to be reduced (p=0.06). There was an interaction between vitamin E and the source of Se in glutathione peroxidase activity (GSH-Px) and Se concentration in excreta. Increasing vitamin E from 50 IU to 100 IU elevated GSH-Px and Se concentration in excreta by 42 IU/g Hb and 0.9 ppm for the organic Se group, respectively, but reduced GSH-Px and Se concentration in excreta by 16 IU/g Hb and 1.3 ppm for inorganic group, respectively. Vitamin E played no role in the feather coverage of the birds when scored on day 37. Organic Se is more effective in improving feather score and 24 h drip-loss, with a markedly higher deposition rate in breast muscle and a lower excretion rate in the excreta (p<0.05) compared to the inorganic Se source. Both vitamin E and the source of Se did not affect (p>0.05) the energy utilisation by birds.

Effect of Selenium-enriched Bean Sprout and Other Selenium Sources on Productivity and Selenium Concentration in Eggs of Laying Hens

  • Chinrasri, O.;Chantiratikul, P.;Thosaikham, W.;Atiwetin, P.;Chumpawadee, S.;Saenthaweesuk, S.;Chantiratikul, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1661-1666
    • /
    • 2009
  • The objective of this study was to determine the effect of Se-enriched bean sprout, Se-enriched yeast and sodium selenite on productivity, egg quality and egg Se concentrations in laying hens. Using a Completely Randomized Design, 144 Rohman laying hens at 71 weeks of age were divided into four groups. Each group consisted of four replicates and each replicate contained nine hens. The dietary treatments were T1: control diet, T2: control diet plus 0.3 mg Se/kg from sodium selenite, T3: control diet plus 0.3 mg Se/kg from Se-enriched yeast, T4: control diet plus 0.3 mg Se/kg from Se-enriched bean sprout. The results showed that there was no significant difference (p>0.05) in feed intake, egg production and egg quality among treatments. Selenium supplementation from Seenriched yeast and Se-enriched bean sprout markedly increased (p<0.05) egg Se concentration as compared to the control and sodium selenite groups. The results indicated that Se-enriched bean sprout could be used as an alternative Se source in diets of laying hens.

Effects of Zn-L-Selenomethionine on Carcass Composition, Meat Characteristics, Fatty Acid Composition, Glutathione Peroxidase Activity, and Ribonucleotide Content in Broiler Chickens

  • Chaosap, Chanporn;Sivapirunthep, Panneepa;Takeungwongtrakul, Sirima;Zulkifli, Razauden Mohamed;Sazili, Awis Qurni
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.338-349
    • /
    • 2020
  • The effects of organic Zn-L-selenomethionine (Zn-L-SeMet) at 0.3 ppm on carcass composition, meat characteristics, fatty acid composition, glutathione peroxidase activity, and ribonucleotide content were compared against the commercial inorganic sodium selenite (Na-Se) and the combination of the two, in commercial broilers. A total of 540 one day-old chicks were assigned at random to 3 dietary treatments : i) commercial inorganic selenium as control or T1, ii) a 1:1 ratio of inorganic and organic selenium as T2, and iii) organic selenium as T3. Carcass composition, meat characteristics, cholesterol content, fatty acid composition, and ribonucleotide content were generally unaffected by treatments. However, discrepancy were significantly observed in glutathione peroxidase activity (GSH-Px) and water holding capacity, with organic selenium showing higher glutathione peroxidase activity (p<0.01) and lower shrinkage loss (p<0.05), respectively. These findings could be explained by the contribution of organic selenium in bioavailability of GSH-Px. However, having conducted in a commercial close house system with sufficient amount of nutritional supplementation, the present study demonstrated little or no effects of organic Zn-L-SeMet on meat characteristics, fatty acid composition, and ribonucleotide content (flavor characteristic) in broiler chickens.

Effects of Dietary Supplemented Inorganic and Organic Selenium on Antioxidant Defense Systems in the Intestine, Serum, Liver and Muscle of Korean Native Goats

  • Chung, J.Y.;Kim, J.H.;Ko, Y.H.;Jang, I.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • The present study was designed to assess whether dietary inorganic and organic selenium (Se) could affect antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST), and the level of malondialdehyde (MDA), a marker of lipid peroxidation, in the intestine, serum, liver, and gastrocnemius muscle of Korean native goats. A total of eighteen Korean native goats was allotted into three dietary groups, consisting of basal diet (CON), or basal diet with either 0.25 ppm inorganic (IOSEL) or 0.25 ppm organic Se (ORSEL), and fed the corresponding diets for 5 wks. Growth performance, including body weight and total gain, and blood biochemical profiles, including GSH-Px, were not significantly different between the three dietary groups. Also, the specific activities of SOD, GSH-Px, and GST, and the level of MDA in the intestinal mucosa and liver from goats were not substantially affected by either inorganic Se or organic Se. However, goats fed the diet containing organic Se showed a significant increase in GSH-Px and GST activities in the gastrocnemius muscle compared with those fed the basal diet. In conclusion, increased muscle GSH-Px and GST activities suggest that dietary organic Se may affect, at least in part, the antioxidant defense system in muscle of Korean native goats under the conditions of our feeding regimen.

Influences of Feeding Seleniferous Whole Crop Barley Silage on Growth Performance and Blood Characteristics in Growing Hanwoo Steers (셀레늄함유 청보리 사일리지급여가 육성기 거세한우의 생산성 및 혈액성상에 미치는 영향)

  • Kim, Guk-Won;Jo, Ik-Hwan;HwangBo, Soon;Lee, Sung-Hoon;Han, Ouk-Kyu;Park, Tae-Il;Choi, In-Bae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • This study was conducted to investigate effects of feeding seleniferous whole crop barley silage (WCBS) on growth performance and blood characteristics in growing Hanwoo steers. A total of 20 growing Hanwoo steers, initially weighing on average 208.8 kg of body weight, were used and treatments were consisted of 1) controls : 0.1 mg/kg Se, 2) T1 : 0.3 mg/kg Se, 3) T2 : 0.9 mg/kg Se by combining seleniferous and/or non-seleniferous WCBS, and 4) T3 : 0.9 mg/kg Se of inorganic Se treatment. Five steers were allocated to each treatment, and the trial was lasted for 90 days. All experimental diets were included to 30% of combination of seleniferous and/or non-seleniferous WCBS, and in T3 diet, sodium selenite that corresponds to 0.9 mg/kg Se was added to control diets. Also, the diets were isonitrogenous and isocaloric among treatments. Dietary level and type of selenium did not affect feed intakes and daily gain, and blood glucose concentration was significantly (p<0.05) lower for controls than T1 and T2 treatments. Blood total lipid concentration was significantly (p<0.05) decreased with increasing levels of dietary selenium, and also that of T2 and T3 was significantly (p<0.05) lower than controls. LDL-cholesterol concentration was significantly (p<0.05) lower for treatments including dietary selenium than controls, and also blood triglyceride concentration was significantly (p<0.05) lower for T2 than controls. Overall, it was tended that feeding seleniferous WCBS or inorganic Se increased blood IgG concentration, and in the same dietary selenium levels, T2 treatment was higher for IgG than T3 group (p>0.05). Blood selenium concentration was significantly (p<0.05) increased by feeding increasing levels of seleniferous WCBS, but there was no significant difference between controls and T3 group. These results showed that feeding seleniferous WCBS to growing Hanwoo steers was responsible for saccharide and lipid metabolism, and in particular, it reduced their total lipid and blood LDL-cholesterol concentrations. Furthermore, selenium present in seleniferous WCBS rather than inorganic selenium was better available in intestinal absorption, and it might help to enhance immunity in growing and younger stages of Hanwoo steers.

Effects of Dietary Organic Selenium and Vitamin E on Growth Performance, Selenium Retention and Quality of Meat in Broiler Chickens (유기태 셀레늄과 Vitamin E의 복합 급여가 육계의 생산성, 계육 품질 및 Selenium 축적에 미치는 영향)

  • Na, J.C.;Kim, J.H.;Yu, D.J.;Jang, B.G.;Kang, G.H.;Kim, S.H.;Suh, O.S.;Lee, W.J.;Lee, J.C.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.2
    • /
    • pp.143-149
    • /
    • 2007
  • The experiment was conducted to examine the effects of dietary organic selenium and vitamin E on weight gain, feed intake, feed conversion, and selenium retention in meat of broiler chickens. For each growth phase, the basal diet was supplemented with 0 (control), vitamin E 150 IU/kg and the combination of 1.2 ppm Se from selenium yeast (SY) and vitamin E 100, 150, 200 and 300 IU/kg. Weight gain was significantly higher in supplemental control and vitamin E 150 compared to the combination of 1.2 ppm SY and vitamin E 150 IU during day 1 to 21. Feed intake significantly(P<0.05) increased in supplemental vitamin E 150 compared to the combination of 1.2 ppm SY and vitamin E 150 and 200 IU during day 1 to 21. Feed intake was significantly(P<0.05) higher in control compared to that of combination of 1.2 ppm SY and vitamin E 200 IU during day 21 to 35. However feed conversion was not affected in supplemental vitamin E and SY during day 1 to 35. Selenium concentrations of breast muscle and liver tissue significantly increased (P<0.05) in supplemental combination of 1.2 ppm SY and vitamin E compared to the control and vitamin E 150 IU. TBARS of control and vitamin E 150 IU were significantly (P<0.05) higher in day 3 than day 1, but the combination of Se 1.2 ppm and vitamin E of TBARS had no difference during day 1 to 3. TBARS in day 3 was significantly (P<0.05) lower in supplemental combination of Se 1.2 ppm and vitamin E than control and vitamin E 150 IU.

Evaluation of Dietary Zinc, Copper, Manganese and Selenium Intake in Female University Students (여대생의 아연, 구리, 망간, 셀레늄 섭취 상태 평가)

  • Bae, Yun-Jung;Kim, Mi-Hyun;Yeon, Jee-Young
    • Korean Journal of Community Nutrition
    • /
    • v.17 no.2
    • /
    • pp.146-155
    • /
    • 2012
  • This study aimed to measure and evaluate the intakes of four antioxidant trace elements, namely, Zn, Cu, Mn, and Se in 19-29y-old female university students in Korea. Diet data were collected by 3-day dietary records in 644 subjects. The mean age, height, weight and body mass index of the subjects were 20.08 years, 161.77 cm, 54.26 kg and $20.82kg/m^2$, respectively. The mean, median and 25th-75th percentile intakes of Zn, Cu, Mn, and Se in the subjects were 12.83 mg (12.40 mg, 9.59 to 15.34), 1.30 mg (1.27 mg, 1.00 to 1.57), 3.19 mg (3.12 mg, 2.45 to 3.86), and $50.90{\mu}g$ ($50.17{\mu}g$, 37.59 to 64.35), respectively. The proportion of subjects whose Mn intake was adequate or less was 62.89%, and the proportions of subjects whose Zn, Cu and Se intakes were at the estimated average requirements or less were 10.09, 4.97, and 39.60%, respectively. The major food group for dietary intakes of Zn, Cu, Mn, and Se was cereal, providing 8.55 mg (66.60%), 0.78 mg (59.93%), 2.09 mg (65.50%), and $16.83{\mu}g$ (32.43%), respectively. Many female university students were deficient in Mn and Se compared with the dietary reference intakes. Therefore, except for cereal, it is required to consume a diet consisted of various food sources for increasing the intakes of antioxidant trace minerals, especially animal food groups.

Selenium in Pig Nutrition and Reproduction: Boars and Semen Quality - A Review

  • Surai, Peter F.;Fisinin, Vladimir I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.730-746
    • /
    • 2015
  • Selenium plays an important role in boar nutrition via participating in selenoprotein synthesis. It seems likely that selenoproteins are central for antioxidant system regulation in the body. Se-dependent enzyme glutathione peroxidase (GSH-Px) is the most studied selenoprotein in swine production. However, roles of other selenoproteins in boar semen production and maintenance of semen quality also need to be studied. Boar semen is characterised by a high proportion of easily oxidized long chain polyunsaturated fatty acids and requires an effective antioxidant defense. The requirement of swine for selenium varies depending on many environmental and other conditions and, in general, is considered to be 0.15 to 0.30 mg/kg feed. It seems likely that reproducing sows and boars are especially sensitive to Se deficiency, and meeting their requirements is an important challenge for pig nutritionists. In fact, in many countries there are legal limits as to how much Se may be included into the diet and this restricts flexibility in terms of addressing the Se needs of the developing and reproducing swine. The analysis of data of various boar trials with different Se sources indicates that in some cases when background Se levels were low, there were advantages of Se dietary supplementation. It is necessary to take into account that only an optimal Se status of animals is associated with the best antioxidant protection and could have positive effects on boar semen production and its quality. However, in many cases, background Se levels were not determined and therefore, it is difficult to judge if the basic diets were deficient in Se. It can also be suggested that, because of higher efficacy of assimilation from the diet, and possibilities of building Se reserves in the body, organic selenium in the form of selenomethionine (SeMet) provided by a range of products, including Se-Yeast and SeMet preparations is an important source of Se to better meet the needs of modern pig genotypes in commercial conditions of intensive pig production.