• Title/Summary/Keyword: Diesel engine exhaust gas emission

Search Result 285, Processing Time 0.03 seconds

A Study on the MSATs (Mobile source Air Toxics) Contribution from MDTs (Medium-duty Trucks) Exhaust Emission (중형트럭에서 발생하는 배출가스 중 미량유해물질 발생 특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • In Korea, Medium-duty trucks are classified into GVW (Gross Vehicle Weight) 3.5~10tons. MDTs are mostly used for logistics or delivery between regions. There have been studied on diesel fuel vehicles for SUVs(Sports Utility Vehicle) or light-duty trucks. But MDTs have been not studied. Therefore, this study have been used MDTs for characteristic exhaust emission. Test was carried out using the certification test mode (NEDC, New European Driving cycle) and the NIER mode in chassis dynamometer of the MDTs. And emission gas was analyzed for PN (Particulate Number), PN size distribution and aldehydes, VOCs (Volatile Organic Compounds), PAHs (Polycyclic Aromatic Hydrocarbons). This paper concluded that EURO-IV trucks produced more MSATs than EURO V trucks. Depending on the engine temperature, more MSATs were generated in cold temperature than in the hot start operation. However, the driving speed, the opposite results was obtained.

A Study on the Cold Startability and Emission Characteristics of LPG Vehicle According to Test Temperature (시험온도에 따른 LPG 차량의 저온 시동성 및 배출가스 배출특성 연구)

  • Lee, Min-Ho;Kim, Sung-Woo;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.7-13
    • /
    • 2014
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas ($CO_2$, $CH_4$, $N_2O$) regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions (PM) particle of automotive had many problem that cause of ambient pollution, health effects. This paper discussed the influence of LPG fuel on automotive cold startability and exhaust emissions gas. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of cold startability, exhaust emission and greenhouse gas emission was analyzed.

The Characteristics of Exhaust Gas Emissions with GTL Fuel (GTL연료의 배출가스 특성 연구)

  • Gwoak, Soon-Chul;Seo, Chung-Yul;Kang, Dae-Il;Park, Jung-Min;Yim, Yoon-Sung;Hwan, Chun-Sik;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Dug;Jung, Choong-Sub;Jang, Eun-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.17-22
    • /
    • 2007
  • GTL(Gas-to-Liquids) fuel technology was converted from the natural gas, coal and biomass into the diesel or kerosene by Fisher-Tropsch synthesis. GTL fuel have very good merits on high cetane number, low density, free sulfur, lower aromatics contents and no poly-aromatic hydrocarbons as well as the autoignition characteristics. These physical properties make it valuable as a diesel fuel with lower emissions than the conventional diesel fuel. Furthermore, GTL fuel can be use not to the engine any modification. Therefore, to evaluate emissions of GTL fuel, the tested diesel vehicles were fueled on blends of GTL fuel/ultra low sulfur diesel fuel(ULSD). And then, we found out that GTL fuel reduced regulated emissions(CO, NOx, HC, PM) compare with conventional diesel fuel.

Comparison of emission characteristics between fuel injection systems with echanical cam and electric control type on low speed 2 stroke diesel engine for ship propulsion (선박추진용 기계적 캠 구동식 및 전자제어식 연료분사 시스템을 가진 저속 2행정 디젤엔진의 배기특성 비교)

  • Lee, Sang Deuk;Koh, Dae Kwon;Jung, Suk Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.611-616
    • /
    • 2013
  • Many researches have been carried out consistently for the green ship owing to its economic increasement, efficiency and convenience. One of them is an electronic controlled marine diesel engine. However, we are suffered from dissemination of above engine, due to its anxiety about safety and reliability. In order to solve these problems in this study, emission characteristics test of main propulsive two-stroke diesel engine, equipped both electronic control and cam drive fuel injection systems, has been performed and evaluated under the various load conditions. From the test results, we have confirmed that exhaust gas emission characteristics of the electronic control system is similar to the cam drive system in eco-mode operation, but NOx in emission mode has been decreased 100ppm or more in full load condition. HC emission from the electronic control system is decreased 10~20ppm at 50% load, and 35~40ppm at 25% load in comparison to cam drive system. In fuel consumption, it is considered that 7g/kWh is decreased than the value of cam drive system at 700bar of injection pressure, which is 200bar higher than cam drive system.

The effect of heat exchanger type for exhaust heat recovery system on diesel engine performance (배기 열 회수 열교환기 형식이 디젤 엔진 성능에 미치는 영향)

  • Kim, Cheol-Jeong;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.639-647
    • /
    • 2014
  • Due to global warming and depletion of fossil fuels, technologies reducing $CO_2$ emission and increasing fuel efficiency simultaneously are required. An exhaust gas heat recovery system is a technology to satisfy both issues. This study analyses three types of heat exchanger installed on an exhaust pipe. In case of plate type heat exchanger, back pressure rapidly increased and maximum cylinder pressure reduced in high speed and maximum load, and back pressure increased over twice and specific fuel consumption also increased up to 2% which were the highest increasing rate. In case of fin tube type, the amounts of exhaust emissions and specific fuel consumption rate were less than the other two types. The effect of shell and tube was in the middle. Making a decision by only the effect on engine performance, a fin tube type is the best for exhaust heat recovery systems.

Estimation of the Exhaust Characteristics of Biodiesel Used in Diesel Engine (디젤엔진에서 바이오디젤의 배기가스 특성 평가)

  • Baek, Seok Heum;Yoon, Jeong Hwan;Jung, Woo Sung;Ha, Hyeong Soo;Chung, Sung Sik;Yeom, Jeong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2014
  • In this study, the characteristics of exhaust gas as a function of the biodiesel mixing ratio were investigated. Diesel and waste oil were used for preparing mixed fuel, and the ratios of the mixed fuel were varied in the BD3~BD100 range. The injection pressures(${\Delta}p_{inj}$) was considered as an experimental variable and was set to 400 bar, 600 bar, 800 bar, 1000 bar, and 1200 bar. Furthermore, for quantitatively analyzing the characteristics of exhaust gas(NOx and Soot), the concepts of Pearson correlation coefficient and Spearman rank-order correlation coefficient based on statistics were introduced. Consequently, it was found that the correlation of the emission of NOx and Soot is linear, and the Pearson and Spearman coefficients are -0.732 and -0.724, respectively, under all analysis conditions. Especially, for the injection pressure of 800 bar, a simultaneous reduction in NOx and Soot emission is possible by controlling the biodiesel mixing ratio. This is because the correlation coefficients of NOx and Soot emissions were nearly 0, as the Pearson correlation coefficient was -0.089.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

A Study on the Emissions Characteristics of a LPG Vehicle According to Various Test Modes and Ambient Conditions (다양한 시험모드와 환경조건에 따른 LPG 차량의 배출특성 연구)

  • Lee, Min-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions of automotive had many problem that cause of ambient pollution, health effects. Based on various test modes and ambient conditions, this paper discusses the characteristics of LPG on exhaust emissions and greenhouse gases. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of vehicle test mode and ambient condition, exhaust emission, greenhouse gas emission was analyzed.

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.