DOI QR코드

DOI QR Code

The effect of heat exchanger type for exhaust heat recovery system on diesel engine performance

배기 열 회수 열교환기 형식이 디젤 엔진 성능에 미치는 영향

  • Kim, Cheol-Jeong (Department of Mechanical Engineering, Graduate School of Korea Maritime and Ocean University) ;
  • Choi, Byung-Chul (Ship & Plant Research Team, KR) ;
  • Park, Kweon-Ha (Division of Mechanical & Energy Systems Engineering, Korea Maritime University)
  • Received : 2013.12.31
  • Accepted : 2014.07.07
  • Published : 2014.07.31

Abstract

Due to global warming and depletion of fossil fuels, technologies reducing $CO_2$ emission and increasing fuel efficiency simultaneously are required. An exhaust gas heat recovery system is a technology to satisfy both issues. This study analyses three types of heat exchanger installed on an exhaust pipe. In case of plate type heat exchanger, back pressure rapidly increased and maximum cylinder pressure reduced in high speed and maximum load, and back pressure increased over twice and specific fuel consumption also increased up to 2% which were the highest increasing rate. In case of fin tube type, the amounts of exhaust emissions and specific fuel consumption rate were less than the other two types. The effect of shell and tube was in the middle. Making a decision by only the effect on engine performance, a fin tube type is the best for exhaust heat recovery systems.

지구 온난화와 화석 연료 고갈로 인해 $CO_2$ 저감과 효율 상승을 동시에 만족하는 기술 개발이 요구된다. 배기 열 회수 기술은 두 가지를 모두 만족할 수 있는 대표적인 기술이다. 본 연구는 배기 열 회수 장치를 위한 세 가지 형식의 증발기용 열교환기를 배기관에 설치하여 실험 및 분석하였다. 고속최대부하에서 판형 열교환기의 배압이 가장 높아지고 실린더 최고 압력이 낮아지며 일산화탄소 배출량도 증가하였다. 또한 고속에서 배압이 2배 이상 증가하며 연료소비율이 2% 증가되어 열교환기 중 가장 높은 증가량을 나타내었다. 핀 튜브 열교환기는 전반적으로 배기 배출물이 적게 배출되고 연료소비율도 가장 적게 나타났다. 쉘 앤 튜브는 판형과 핀 튜브 성능의 중간정도이다. 엔진에 미치는 영향으로만 판단할 때 핀 튜브 열교환기가 배기 열 회수에 가장 적합한 열교환기로 판단된다.

Keywords

References

  1. Z. Peng and T. Wang, "Analysis of environmental and economic benefits of integrated exhaust energy recovery (EER) for vehicles original research article," Applied Energy, vol. 105, no. 1, pp. 238-243, 2013. https://doi.org/10.1016/j.apenergy.2013.01.004
  2. H. S. Heo and S. J. Bae, "Technology trends of rankine steam cycle for engine waste heat recovery," Auto Journal, vol. 32, no. 5, pp. 23-32, 2010 (in Korean).
  3. R. Saidur, M. Rezaei, W. K. Muzammil, M. H. Hassan, S. Paria, and M. Hasanuzzaman, "Technologies to recover exhaust heat from internal combustion engines review article," Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 5649-5659, 2012. https://doi.org/10.1016/j.rser.2012.05.018
  4. K. H. Kim, "Theoretical characteristics of thermodynamic performance of combined heat and power generation with parallel circuit using organic rankine cycle," Journal of the Korean Solar Energy Society, vol. 31, no. 6, pp. 49-56, 2011 (in Korean). https://doi.org/10.7836/kses.2011.31.6.049
  5. B. C. Choi and Y. M. Kim, "Exhaust-gas heat-recovery system of marine deisel engine(II)," Transactions of the Korean society of mechanical engineers, vol. 36, no. 6, pp. 593-600, 2012 (in Korean). https://doi.org/10.3795/KSME-B.2012.36.6.593
  6. K. H. Kim, "Study of working fluids on thermodynamic performance of organic rankine cycle [ORC]," Transactions of the Korean Hydrogen and New Energy Society, vol. 22, no. 2, pp. 223-231, 2011 (in Korean).
  7. C. He, C. Liu, H. Gao, H. Xie, Y. Li, S. Wu, and J. Xu, "The optimal evaporation temperature and working fluids for subcritical organic rankine cycle original research article," Energy, vol. 38, no. 1, pp. 136-143, 2012. https://doi.org/10.1016/j.energy.2011.12.022
  8. P. Kauranen, T. Elonen, L. Wikstrom, J. Heikkinen, J. Laurikko, "Temperature optimisation of a diesel engine using exhaust gas heat recovery and thermal energy storage (diesel engine with thermal energy storage) original research article," Applied Thermal Engineering, vol. 30, no. 6-7, pp. 631-638, 2010. https://doi.org/10.1016/j.applthermaleng.2009.11.008
  9. S. Y. Choi, K. S. Park, S. J. Park, Y. H. Byun, S. M. Son, "The effects of muffler back pressure on the engine combustion characteristics," The Korean Society of Automotive Engineers, vol. 1, no. 65, pp. 141-147, 2004 (in Korean).
  10. S. M. Son, K. S. Park, S. J. Park, Y. H. Byun, S. Y. Choi, "The effect of exhaust pipe shape on the back pressure characteristics and engine performance," The Korean Society of Automotive Engineers, vol. 1, no. 86, pp. 77-82, 2005 (in Korean).
  11. K. Kim, S. G. Cho, S. J. Hwang, "Effects of exhaust temperature reduction on the performance and exhaust emissions in diesel eninge," Korean Society of Marine Engineering, vol. 1, no. 36, pp. 109-114, 2004 (in Korean).
  12. S. M. Noh, D. W. Nam, J. W. Lee, Y. Y. Ham, K. M. Chun, "The study of the effect of EGR rate and Temperature on NOx and PM reduction in a direct-injection diesel engine," The Korean Society of Automotive Engineers, vol. 1, no. 36, pp. 418-424, 2001 (in Korean).
  13. K. S. Jung, J. U. Lee, J. A. Jung, J. S. Choi, "Estimation of engine output for marine diesel engines," Journal of the Korean Society of Marine Engineering, vol. 4, no. 9, pp. 436-442, 2011 (in Korean). https://doi.org/10.5916/jkosme.2011.35.4.436
  14. W. W. Pulkrabek, Engineering Fundamentals of the Internal Combustion, 2nd ed. Pearson Prentice Hall, 2004.
  15. S. R. Turns, An Introduction on Combustion : Concepts and Applications, McGRAW-HILL INTERNATIONAL EDITIONS, 1999.
  16. W. Addy Majewski, Hannu Jaaskelainen, What is Diesel Fuel, 2000. [Online]. Available: http://procom.chonbuk.ac.kr

Cited by

  1. Effect of Storage Tank Structure Variation on Fuel Shiftting vol.39, pp.6, 2015, https://doi.org/10.5916/jkosme.2015.39.6.599