• 제목/요약/키워드: Diesel engine exhaust gas emission

검색결과 285건 처리시간 0.024초

박용 디젤기관의 배기규제 및 배기 배출물 저감 대책 (Emissions Limits and Measures for Reducing Exhaust Emissions in Marine Diesel Engines)

  • 배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.471-486
    • /
    • 2001
  • The principal trends in the course of emission control legislation are reviewed in this paper. In order to keep such a regulation, moreover, an inquiry ito the concrete technical possibility is conducted through review articles, Also, the composition of exhaust gases emitted from a marine diesel engine are investigated as several samples and the measures that can satisfy the value of regulation are handled with laying stress on the control methods discussed to date. It was concluded that various combined systems can be made to reduce NOx emissions without deteriorating substantially navigation costs since many technologies for reducing NOx emissions are being developed. All heat engines suffer from SOx emissions. There are two methods for reducing SOx emissions: desulfurization from exhaust gas and removal of sulfur composition from fuel oil. However it is necessary to watch the development of these technologies to evaluate which method is more favorable. Heat engines have a big problem in the regulation of environmental pollution from exhaust emissions. In the near future, however, diesel engines may be superior to other heat engines, owing to the high thermal efficiency, although the sales of individual models in dises engines may be prosperous and declining.

  • PDF

LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구 (Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel)

  • 이석환;오승묵;최영;강건용
    • 한국가스학회지
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2010
  • 본 연구에서는 LPG/바이오디젤 혼합연료의 직접분사식 디젤엔진 적용성에 관한 실험을 수행하였다. 특히, 혼합연료를 엔진에 적용하는 경우 엔진성능, 배출가스 (미연탄화수소, 일산화탄소, 질소산화물, 이산화탄소), 연소안정성에 대한 실험을 1,500 rpm의 엔진회전수 조건에서 수행하였다. 바이오디젤은 질량대비 20-60% 범위로 LPG에 혼합하였다. 바이오디젤을 40% 이상 혼합하는 경우 엔진은 모든 부하영역에서 매우 안정적으로 연소되었다. 바이오디젤의 혼합율이 증가할수록 혼합연료의 세탄가가 향상되어 연소시작 시점이 진각되었다. 혼합연료를 사용하면 저부하에서는 과혼합에 의한 부분연소로 인하여 THC와 CO의 배출량이 급증하였으며, NOx의 경우 저부하에서는 배출량이 디젤연료에 비해서 낮았으며 고부하에서는 더 많이 배출되었다.

Effect of Hydrocarbon Additives on SNCR DeNOx Characteristics under Oxidizing Diesel Exhaust Gas Conditions

  • Nam, Changmo
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.809-820
    • /
    • 2018
  • DeNOx experiments for the effects of hydrocarbon additives on diesel SNCR process were conducted under oxidizing diesel exhaust conditions. A diesel-fueled combustion system was set up to simulate the actual cylinder and head, exhaust pipe and combustion products, where the reducing agent $NH_3$ and $C_2H_6/diesel$ fuel additives were separately or simultaneously injected into the exhaust pipe, used as the SNCR flow reactor. A wide range of air/fuel ratios (A/F=20~40) were maintained, based on engine speeds where an initial NOx level was 530 ppm and the molar ratios (${\beta}=NH_3/NOx$) ranged between 1.0~2.0, together with adjusting the amounts of hydrocarbon additives. Temperature windows were normally formed in the range of 1200~1350K, which were shifted downwards by 50~100K with injecting $C_2H_6/diesel$ fuel additives. About 50~68% NOx reduction was possible with the above molar ratios (${\beta}$) at the optimum flow #1 ($T_{in}=1260K$). Injecting a small amount of $C_2H_6$ or diesel fuel (${\gamma}=hydrocarbon/NOx$) gave the promising results, particularly in the lower exhaust temperatures, by contributing to the sufficient production of active radicals ($OH/O/HO_2/H$) for NOx reduction. Unfortunately, the addition of hydrocarbons increased the concentrations of byproducts such as CO, UHC, $N_2O$ and $NO_2$, and their emission levels are discussed. Among them, Injecting diesel fuel together with the primary reductant seems to be more encouraging for practical reason and could be suggested as an alternative SNCR DeNOx strategy under diesel exhaust systems, following further optimization of chemicals used for lower emission levels of byproducts.

DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구 (A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel)

  • 김현철;강우;김병수;박상훈;정재우;박종호
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

산소과급 대형디젤기관에서 고압루트방식 Cooled-EGR적용에 따른 성능 및 배출가스 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Performance and Exhaust Gas Emission with Charging Diesel Engine on Oxygen-enrich and High Pressure Route Cooled-EGR)

  • 김재진;오상기;백두성;한영출
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.37-42
    • /
    • 2003
  • This research was carried on an 8100cc turbo-charged heavy duty diesel in the application of a cooled-EGR. Exhaust and intake manifold were modified and an electronically controlled EGR was installed in order to investigate engine performance and exhausted emission characteristics. High pressure route was designed in the compact form on the purpose of practicability in this cooled-EGR system, which constitutes a venturi tube to maintain pressure difference between exhaust manifold and compressor, an EGR cooler, an EGR valve and a solenoid valve.

디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 고찰 (A Study for Failure Examples of Emission Gas Recirculation and Air Control and Catalyzed Particulate Filter System in Diesel Engine Vehicle)

  • 이일권;국창호;함성훈;이영숙;염광욱;유창배;김성모;임하영;안호철;이정호
    • 한국가스학회지
    • /
    • 제22권2호
    • /
    • pp.78-83
    • /
    • 2018
  • 이 논문은 디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 연구이다. 첫 번째 사례는 엔진진공펌프 손상으로 인해 엔진오일이 EGR 밸브 내부 다이어프램 손상으로 인해 오일이 흡기로 유입되어 연소실로 들어가 불완전 연소함으로써 배기할 때 매연이 발생된 것으로 확인되었다. 두 번째 사례의 원인은 공기제어 장치인 스로틀 플랩(throttle flap)을 점검하였을 때 스로틀 플랩이 고착되어 흡입공기량 부족에 의해 매연이 발생된 것을 확인하였다. 세 번째 사례는, 배기가스 온도센서의 불량으로 인해 온도를 감지하지 못해 재생기능이 되지 않아 매연이 발생된 것으로 확인되었다. 따라서, 배기가스발생으로 인한 환경오염 문제가 발생하지 않도록 최적의 상태를 유지하도록 관리하여야 한다.

Off-road용 디젤엔진에서의 VGT 및 EGR 적용에 따른 엔진 배기 및 연비 특성 평가 (An Evaluation of Emission Characteristics and Fuel Consumption on the Off-road Diesel Engine using VGT and EGR)

  • 하형수;신재식;정학섭;표수강;강정호
    • 한국연소학회지
    • /
    • 제21권2호
    • /
    • pp.1-6
    • /
    • 2016
  • To meet the Tier-4 emission standard, a variety of combustion technology in the field of off-road engine has been applied in conjunction with the engine after treatment technology. In this study, as the basis study for applying VGT and HPL EGR to 3.6 L CRDi engine, exhaust gas characteristics and fuel economy characteristics are confirmed in accordance with VGT and EGR operating conditions. Consequently, in the EGR applicable conditions, 60% VGT vane duty condition was confirmed that the trade-off characteristics between NOx and smoke are advantageous. In addition, in view of BSFC, VGT vane duty is considered desirable to control at around 50%.

파일럿 분사가 저온 디젤 연소에 미치는 영향 (Effects of Pilot Injection on Low Temperature Diesel Combustion)

  • 한상욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.

천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션 (Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine)

  • 최인수
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF