• Title/Summary/Keyword: Diesel engine emission

Search Result 804, Processing Time 0.024 seconds

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

Verification and Hydraulic Model Development of 3rd Generation Piezo Injector for CRDi System in Passenger Vehicle (승용CRDi용 3세대 피에조 인젝터 유압해석모델 개발 및 검증)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to its emission characteristics and fuel consumption. In this study, numerical model of 3rd generation piezo-driven injector was designed to analyze the hydraulic performance. Also the injection response characteristics was investigated by using the AMESim simulation code. From this study, it was shown that 3rd generation piezo-driven injector had a faster response and had better control capability due to its hydraulic bypass-circuit that has potential to higher hydraulic characteristics and improved accuracy of injected fuel quantity.

Development of Renewable Energy Source in Mongolia: Biodiesel (몽골지역의 신재생에너지 발굴: 바이오디젤)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Recently, the development of renewable energy sources in Mongolia has been needed due to climate change and air pollution in Ulaanbaatar as rapid economic growth. Biodiesel can be considered as an alternative fuel for petroleum based diesel in order to decrease air pollution in Ulaanbaatar because of its no emission of particle materials from internal combustion engine in automobile. Rapeseed oil having low cloud point and pour point was suggested as a promising raw material for biodiesel production in Mongolia. Considering high population density and severe air pollution by particle materials and SOx in Ulaanbaatar, prior supplying site of biodiesel in Mongolia was the capital region including Ulaanbaatar. In the production of biodiesel in Mongolia, adsorption process was a effective alternative to washing process for the removal of residual alkali catalyst and reactants due to long winter time in Mongolia. For the stable supply of biodiesel, subsidy and no tax policy is needed in the early stage of biodiesel supply in Mongolia.

  • PDF

Trends of exhaust emission control technology for diesel vehicles (최근 디이젤자동차의 배출가스 대책기술 동향)

  • 조강래;한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 1986
  • 입자상물질을 저감시키는 방법은 크게 두 가지로 나누어진다. 하나는 기관내에서 연소조건을 개 선하여 연소방응시 입자상물질이 가능한한 적게 생성되도록 하는 기관개량(Engine Modification) 방법 즉, 실린더 내에서의 저감기술(In Cylinder Control Techniques)이며, 다른 하나는 기관내에 서 생성된 입자상물질이 대기중에 배출되기 전에 배기관으로부터 직접 제거하는 기술이다. 보통 실린더 내에서의 저감기술이 가장 바람직한 방법으로 지금까지는 이 분야의 기술이 많이 개발 되어 왔으나 디이젤자동차에서 배출되는 입자상물질의 허용기준이 강화됨에 따라 기관 내에서의 저감기술만으로는 목표달성이 어렵기 때문에 그 후처리기술이 필요하게 되었다. 여기서는 최근 까지 연구된 저감장치에 관하여 간단히 소개하고 선진국에서 실제 자동차에 부착사용되고 있거나 가장 효율적이며 사용가능성이 높아 연구되고 있는 입자상물질 필터 및 트랩과 그 재생장치에 대하여 상세히 기술하고자 한다.

  • PDF

A Study on the Thermal Aging and SOx Poisoning Characteristics on Alumina Supported Silver Catalyst under Diesel Engine Emission Condition (디젤엔진 배기가스조건하에서의 Pt 및 Ag 담지 알루미나 촉매의 열적 노화 특성과 SOx 피독 특성에 관한 연구)

  • 신병선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.199-208
    • /
    • 2000
  • In this study we investigated on the possibility of platinum and silver catalysts as de-NOx catalyst for activity test of supported metal oxide catalysts. the study was performed with the change of amount of metal and support types. The catalyst was prepared the activity of alumina supported silver catalyst produced by dry and wet impregnation method respectively and the resistance of sulfur for optimum supported silver catalyst,. As a result the activity of alumina supported platinum catalyst was showed at low temperature region but the case of silver catalyst activated at high temperature region. So we finally chose alumina supported silver catalyst as de-NOx target catalyst because alumina supported catalyst showed higher activity than alumina supported platinum catalyst.

  • PDF

A Computation study on Characteristics of Transient Injection of Pintle-type Injector for Direct Injection of LPG (LPG 연료의 직접 분사를 위한 핀틀타입 인젝터의 비정상 분무 특성에 관한 수치해석)

  • Choi, S.H.;Hwang, S.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.15-23
    • /
    • 1999
  • The use of LPG as clean fuel for Diesel engine is very attractive way to reduce soot and NOx emission. In this study, a numerical study has been done to know the transient behavior of LPG fuel in chamber pressures which is held at a pressure above (0.37MPa)and below(0.15MPa)the fuel vapor pressure. Results show that the vortex formed within the start of injection at the leading edge of the spray cone and was most apparent for 0.15MPa chamber pressure case. The high speed photographs and model results showed a narrower cone angle during the quasi-steady spray period at the 0.37MPa chamber pressure compared to the 0.15MPa case. And it can be shown that more realistic vaporization process is necessary to predict the spray length well.

  • PDF

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

A Study on Calculation of Air Pollutants Emission Factors for Construction Equipment (건설기게의 대기오염물질 배출계수 산정을 위한 연구)

  • lim, Jae-Hyun;Jung, Sung-Woon;Lee, Tae-Woo;Kim, Jong-Choon;Seo, Chung-Youl;Ryu, Jung-Ho;Hwang, Jin-Woo;Kim, Sun-Moon;Eom, Dong-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.188-195
    • /
    • 2009
  • Generally. mobile sources of air pollution were classified in on-road and non-road. Due to increased registration number of construction equipment in Korea. updated emission factors for non-road mobile sources, such as construction machinery. should be developed. NONROAD model of U.S. EPA already has introduced transient adjustment factors and sulfur adjustment factors for emission factors of diesel powered engine. In addition to this. European Environment Agency (EEA) has proposed emission factors for off-road machinery including several types of construction equipment. In this study. six types of construction equipment, such as excavator. forklift, loader, crane, roller and bulldozer, were studied to estimate emission factors based on total registration status in Korea. Total 445 construction equipments between 2004 and 2007 model year were tested with KC1-8 mode and air pollutants (CO, THC, $NO_x$, and PM) were measured. After statistical estimation and calculation, emission factors for CO, THC, $NO_x$, and PM for excavator, forklift, loader, crane, roller and bulldozer were provided and compared with previous emission factors. Moreover, updated emission factors for six types of construction equipment in this study were verified after comparison with emission factors of U.S. EPA. Finally, estimated emission amounts of four air pollutants were suggested according to six types of construction equipment.

Numerical Study on the Fuel Spray Targeting for the Improvement of HSDI Engine Performance (HSDI 엔진 성능 향상을 위한 연료분사 타겟팅에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.569-576
    • /
    • 2016
  • The objective of this study was to investigate, using a numerical method, the fuel injection targeting for improving the combustion performance in a HSDI diesel engine. In this work, the ECFM-3Z model was applied as the combustion model, and the injection mass, inclined spray angle, and injection timing were varied for the study on the targeting of fuel spray. The results of this work were compared in terms of cylinder pressure, rate of heat release, and exhaust emissions characteristics. It was found that the cylinder pressure increased when the injection timing was advanced, and the rate of heat release increased when more fuel was injected into the piston bowl. In addition, $NO_x$ emission increased owing to the increase in the rate of heat release. On the other hand, CO and soot emissions decreased because of the improvement in combustion performance.

Acoustic Emission of Heat Treated Compacted Graphite Iron under 873~1173 K (873~1173 K에서 열처리된 강화흑연강(Compacted Graphite Iron, CGI)의 음향방출 특성)

  • Nam, Ki-Woo;Ahn, Byung-Kun;Lee, Soo-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.415-421
    • /
    • 2013
  • CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873~1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.