• Title/Summary/Keyword: Dielectric constant and loss

Search Result 604, Processing Time 0.02 seconds

Microstructure and Properties of $(Sr_{0.85}Ca_{0.15})TiO_3$ Thin Film with Annealing Temperature (열처리온도에 따른 $(Sr_{0.85}Ca_{0.15})TiO_3$박막의 구조 및 특성)

  • 김진사;조춘남;신철기;최운식;김충혁;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.802-807
    • /
    • 2001
  • The (S $r_{0.85}$C $a_{0.15}$)Ti $O_{3}$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/ $SiO_2$/Si) using RF sputtering method. The composition of SCT thin films deposited on Si substrate at woom temperature is close to stoichiometry(1.102 in A/B ratio). The maximum dielectric constant of SCT thin films is obtained by annealing at 600[$^{\circ}C$]. The capacitance characteristics had a stable value within $\pm$4[%]. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films is observed above 200[kHz]. SCT thin films used in this study show the phenomena of dielectric relaxation with the increase of frequencey.cey.

  • PDF

High Temperature Dielectric Properties of Silicon Nitride Materials (질화규소 재료의 고온 유전물성 평가)

  • Choi, Doo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.114-119
    • /
    • 2007
  • Dielectric properties of quartz glass and $Si_3N_4$ are investigated using the waveguide method from room temperature to $800^{\circ}C$. For the case of dielectric constant, $Si_3N_4$ showed similar increase with quartz glass up to $300^{\circ}C$, but less increase from $300^{\circ}C$ to $800^{\circ}C$. For the case of loss tangent, those showed gradual increase with temperature except of some temperature points. The loss tangent of $Si_3N_4$ and quartz glass increased up to 18.2% and 12.5% respectively. Through these researches, high temperature dielectric properties of silicon nitride materials are characterized.

Microwave Dielectric Properties and Infrared ReflectivitySpectra of (Zr$_{0.8}$Sn$_{0.2}$)TiO$_4$ Ceramics ((Zr$_{0.8}$Sn$_{0.2}$)TiO$_4$ 세라믹스의 마이크로파 유전특성 및 Infrared Reflectivity Spectra of (Zr0.8Sn0.2)TiO4)

  • 윤기현;안일석;김우섭;김응수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.915-922
    • /
    • 1999
  • Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics were inves-tigated with the various cooling rate. Dielectric constant was nearly same value while the unloaded Q value was largely affected by cooling rate. The Q.f of 42,140 at 7 GHz was obtained for the specimens with cooling rate of 1$^{\circ}C$/min. The effect of the cooling rate on the change of the ionic the electronic polarization and the intrinsic microwave loss of the specimens were investigated by the infrared reflectivity spectra from 50 to 4000cm-1 which were calculated by Kramers-Kroning analysis and the classical oscillator model. The relative tendency of microwave dielectric properties of the specimens calculated from the relfectivity data were in good agreement with the results by the post resonant method.

  • PDF

A Study on Dielectric Properties of Printed Circuit Board Materials with Variation of Frequency and Temperature (온도 및 주파수 변화에 따른 프린트 배선기판의 유전특성 연구)

  • 박종성;김종헌;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.773-777
    • /
    • 1998
  • This paper presents the results of measured permittivity of PCB sheet material in the frequency range of 0.1 ~ 2[㎓] and temperature range of 25~ 85[>$^{\circ}C$]. Microstrip lines with different physical length are implemented to measure the attenuation and phase shift of the signals through these lines. The loss factor of glass-epoxy and teflon could by calculated with the measured dielectric constant and the attenuation. From the experiment, the glass-epoxy was more influenced by temperature and frequency than teflon. The average dielectric constants of glass-epoxy and teflon within the measured frequency range are 4.48 and 2.18, respectively.

  • PDF

Effects of RTA on the Properties of SBNO Thin Film (SBNO 박막의 특성에 미치는 RTA 영향)

  • Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.926-929
    • /
    • 2012
  • The $Sr_{0.7}Bi-{2.3}Nb_2O_9$(SBNO) thin films were deposited on Si substrate by RF magnetron sputtering method at $300^{\circ}C$ of substrate temperature. And the SBNO thin films were annealed at $650{\sim}800^{\circ}C$ using RTA (rapid thermal annealing). The grain of SBNO thin films were increased with the increase of annealing temperature. The dielectric constant (100) of SBNO thin film was obtained by RTA above $750^{\circ}C$. The voltage dependence of dielectric loss showed a value within 0.03 in voltage ranges of -5~+5 V. Also, the dielectric constant characteristics showed a stable value with the increase of frequency.

Highly flexible dielectric composite based on passivated single-wall carbon nanotubes (SWNTs)

  • Jeong, Hyeon-Taek;Kim, Yong-Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Single-walled carbon nanotubes (SWNTs) was modified with various length of linear alkyl chains and passivated to form dielectric filler. The modified SWNTs embedded into epoxy matrix to fabricate a flexible composite with high dielectric constant. The dielectric behavior of the composite was significantly changed with various alkyl chain length(n) of pyrene. The dielectric constant of the epoxy/SWNTs composite significantly increased with respect to increase in length of alkyl chain at the frequency range from 10 to 105Hz (n=12and18).We also found that the passivated epoxy/SWNTs composite with high dielectric constant presented low dielectric loss. The resulted dielectric performances corresponded to de-bundling of nanotubes and their distribution behavior in the matrix in terms of tail length of alkyl pyrene in the passivation layer.

A Review on Recent Development and Applications of Dielectric Elastomers

  • Seo, Jin Sung;Kim, Dohyeon;Hwang, Sosan;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • This paper reviews recent developments and applications of dielectric elastomers (DEs) and suggests various techniques to improve DE properties. DEs as smart materials are a variety of electro-active polymers (EAPs) that convert electrical energy into mechanical energy and cause a large deformation when a voltage is applied. The dielectric constant, modulus, and dielectric loss of DEs determine the efficiency of deformation. Among these, the dielectric constant significantly affects their performance. Therefore, various recent approaches to improve the dielectric constant are reviewed, including the enhancement of polarization, introduction of microporous structures in the matrix, and introduction of ferroelectric fillers. Furthermore, the basic principles of DEs are examined, as well as their various applications such as actuators, generators, sensors, and artificial muscles.

A new low dielectric constant barium titanate - poly (methyl methacrylate) nanocomposite films

  • Upadhyay, Ravindra H.;Deshmukh, Rajendra R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • In the present investigation, nanocomposite films with poly(methyl methacrylate) (PMMA) as a polymer matrix and barium titanate as a filler were prepared by solution casting method. Barium titanate nano particles were prepared using Ti(IV) triethanolaminato isopropoxide and hydrated barium hydroxide as precursors and tetra methyl ammonium hydroxide (TMAH) as a base. The nanocomposite films were characterized using XRD, FTIR, SEM and dielectric spectroscopy techniques. Dielectric measurements were performed in the frequency range 100 Hz-10 MHz. Dielectric constant of nanocomposites were found to depend on the frequency, the temperature and the filler fraction. Dissipation factors were also influenced by the frequency and the temperature but not much influenced by the filler fractions. The 10 wt% of BT-PMMA nanocomposite had the lowest dielectric constant of 3.58 and dielectric loss tangent of 0.024 at 1MHz and $25^{\circ}C$. The dielectric mixing model of Modified Lichtenecker showed the close fit to the experimental data.

Sintering and Dielectric Properties in Cordierite/Glass Composite for LTCC Application (Cordierite/Glass Composite계 LTCC 소재의 소결 및 유전특성)

  • Hwang, Il-Sun;Yeo, Dong-Hun;Shin, Hyo-Soon;Kim, Jong-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • Recently, there has been growing interest in low loss and low dielectric constant material for LTCC application, as the frequency range for electronic devices increases. This study was designed to evaluate the effect of cordierite filler for low dielectric constant LTCC material. From the previous experiments, two glass compositions of B-Si-Al-Zn-Ba-Ca-O and B-Si-Al-Sr-Ca-O system, were chosen. Each powder of two glass compositions was sintered respectively with commercial cordierite powder in temperature range from $800^{\circ}C\;to\;900^{\circ}C$. Crystalline cordierite and glass peaks were affected only with two factors of composition and sintering temperature among various factors. With the optimized condition of two cordierite/glass compositions, obtained dielectric constant was below 5.5 and quality factor was above 1,000. Closed pore of sintered body was controled by sintering temperature and sintering time. When cordierite/glass composite with ratio of 5.5:4.5 was sintered at $900^{\circ}C$, densification was sufficient with good dielectric characteristics of ${\epsilon}_r<5.1,\;Q{\ge}1,000$. Residual fine closed pores could be reduced with control of sintering temperature and time. 3 point bending strength and chemical durability were evaluated to obtain feasibility for substrate material.

Material Properties Characterization Based on Measurements of Reflection Coefficient and Bandwidth

  • Nguyen, Phuong Minh;Chung, Jae-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.382-386
    • /
    • 2014
  • The knowledge of substrate material properties is important in antenna design. We present a technique to accurately characterize the dielectric constant and loss tangent of an antenna substrate based on the measurements of antenna's reflection coefficient and bandwidth. In this technique, an error function is formulated by combinations of the reflection coefficient and bandwidth of measured and simulated data, and then an optimization technique is used to efficiently search for the substrate properties that minimize the error function. The results show that the method is effective in retrieving the dielectric constant and loss tangent of the antenna substrate without the need of additional test fixtures as in conventional substrate characterization methods.