• Title/Summary/Keyword: Dielectric behavior

Search Result 386, Processing Time 0.027 seconds

Sr/Ba Ratio Dependence of Dielectric Characteristics in Strontium Barium NiobateCeramics (Sr/Ba 비에 따른 Strontium Barium Niobate 세라믹스의 유전특성)

  • 김명섭;이준형;김정주;이희영;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1167-1173
    • /
    • 2001
  • The tetragonal tungsten bronze type of Sr$_{x}Ba_{1-x}Nb_{2}O_{6}$(SBN) (0.3$\le$x$\ge$0.7) ceramics was synthesized by the solid state reaction method, and the dielectric properties of SBN ceramics as a function of Sr/Ba ratio were examined. With increasing Sr/Ba ratio in SBN ceramics, the Curie temperature decreased and the maximum dielectric constant at the Curie temperature increased. The relaxor behavior of the SBN ceramics as a function of Sr/Ba ratio was quantitatively evaluated. More relaxor behavior of dielectric characteristics was observed as the ratio of Sr/Ba increased. The experimental results are explained with a viewpoint of crystallography of tungsten bronze structured SBN ceramics.

  • PDF

Dielectric Relaxation and Electrical Conduction Properties of La2NiO4+δ Ceramics (La2NiO4+δ세라믹스의 유전이완 및 전기전도특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.377-383
    • /
    • 2011
  • Thermoelectric power, dc conductivity, and the dielectric relaxation properties of $La_2NiO_{4.03}$ are reported in the temperature range of 77 K - 300 K and in a frequency range of 20 Hz - 1 MHz. Thermoelectric power was positive below 300K. The measured thermoelectric power of $La_2NiO_{4.03}$ decreased linearly with temperature. The dc conductivity showed a temperature variation consistent with the variable range hopping mechanism at low temperatures and the adiabatic polaron hopping mechanism at high temperatures. The low temperature dc conductivity mechanism in $La_2NiO_{4.03}$ was analyzed using Mott's approach. The temperature dependence of thermoelectric power and dc conductivity suggests that the charge carriers responsible for conduction are strongly localized. The relaxation mechanism has been discussed in the frame of the electric modulus and loss spectra. The scaling behavior of the modulus and loss tangent suggests that the relaxation describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy of ~ 0.106eV. At low temperature, variable range hopping and large dielectric relaxation behavior for $La_2NiO_{4.03}$ are consistent with the polaronic nature of the charge carriers.

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

Accurate Measurement of THz Dielectric Constant Using Metamaterials on a Quartz Substrate

  • Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.637-641
    • /
    • 2017
  • We present dielectric constant measurements of thin films using THz metamaterials fabricated on a quartz substrate. The resonance shifts of the metamaterials exhibit saturation behavior with increasing film thickness. The saturation frequency shift varies with the real part of the dielectric constant, from which the numerical expression for the particular metamaterial design was extracted. We first performed finite-difference time-domain simulations to find an explicit relationship between the saturated frequency shift and the dielectric constant of a thin film, which was confirmed by the experimental results from conventional techniques. In particular, the quartz substrate enables us to determine their values more accurately, because of its low substrate index. As a result, we extracted the dielectric constants of various films whose values have not been addressed previously without precise control of the film thickness.

Dielectric Properties of Oriental Lacquer Coating Network

  • 홍진후;김현경;허귀석;최종오
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.715-719
    • /
    • 1997
  • In order to study the dielectric properties of the oriental lacquer films, three different films have been prepared differing purification and curing procedures. Dielectric properties were measured in the frequency range of 1 Hz to 105 Hz at various temperatures between - 50 ℃ and 150 ℃. The DEA using 1 Hz showed that glass transition and secondary relaxation temperatures of oriental lacquer film are very time dependent. In addition, the frequency-independent negative peak between 25 ℃ and 45 ℃ was observed, which could represent the formation of crosslink by laccase enzyme during heating. On the contrary, the high temperature cured film showed a hardly noticeable negative peak at the temperature range. The relationship between thermodynamic properties and chemical structures has been discussed based on the analysis of the dielectric relaxation behavior using the Cole-Cole plot and the dielectric relaxation intensity.

Sontering behavior and dielectric properties $CaTiO_3-La(Zn_{1/2}Ti_{1/2})O_3$ microwave dielectrics ($CaTiO_3-La(Zn_{1/2}Ti_{1/2})O_3$ 마이크로파 유전체의 소결거동 및 유전특성)

  • 김영신;윤상옥;박상엽;김경용
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.503-507
    • /
    • 1998
  • Sintering behavior and dielectric peroperties of $xCaTiO_3-La(Zn_{1/2}Ti_{1/2})O_3$ system were investigated for better understanding of the microwave dielectric materials. In $xCaTiO_3-(1-x)La(Zn_{1/2}Ti_{1/2})O_3$ systems, solid solution type was focused as a function of composition(x=0.4-0.6) and sintered density. With increasing the sintered density, the relative dielectric constant was decreased and Q value was increased and then saturated. In solid solution type, dielectric constant was increased with increasing $CaTiO_3$ content. In $0.5\;CaTiO_3-0.5\; La(Zn_{1/2}Ti_{1/2})O_3$ case, dielectric constant(=48) and temperature coefficient of resonace frequency$(=-1 ppm/^{\circ}C$) were obtained.

  • PDF

Fabrication and Characterization of Ferroelectric PFN Thin Film by Sol-Gel Processing (솔-젤법에 의한 강유전성 PFN 박막의 제조 및 특성평가)

  • 류재율;김병호;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.665-671
    • /
    • 1996
  • Ferroelectric Pb(Fe1/2Nb1/2)O3 thin films were successfully fabricated on ITO/Glass substrate by sol-gel proces-sing and characterized to determine the dielectric and electric properties. Viscosity of PEN sol measured to investigate rheological properties was 3.25 cP which was proper for coating. The sol also showed Newtonian behavior. RTA(Rapid Thermal Annealing) was used for the annealing of the thin film and 1200~1700$\AA$ thick PEN thin films were fabricated by repeating the intermediate and the final annealing. After the deposition of Pt as top electrode by vacuum evaporation dielectric and electric properties were measured. Dielectric properties of FFN thin film were enhanced by increasing the perovskite phase fraction with increasing the annealing temperature. Measured dielectric constant of 1700$\AA$ PFN thin film annealed at $650^{\circ}C$ was 890 at 1kHz Capacitatnce density and dielectric loss were 47 fF/${\mu}{\textrm}{m}$2 and 0.47 respectively. As a result of measuring Curie temperature PFN thin films had Curie point with a rang of 110~12$0^{\circ}C$ and showed broad dielectric peak at that point. Leakage current of the PFN thin films were increased with increasing the annealing tempera-ture.

  • PDF

Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding (플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법)

  • Min, Kyung-Eun;Lee, Jun-Sik;Lee, So-Jeong;Yi, Sung;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.

A Study on the Preparation and Dielectric Characteristic of $\beta$-PVDF Vapor Deposited Thin Films by Applied Electric Field Method (전계인가법을 이용한 $\beta$-PVDF 증착 박막의 제조와 유전특성에 관한 연구)

  • 박수홍;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.221-228
    • /
    • 1998
  • In this study, the $\beta$-Polyvinylidene fluoride(PVDF) thin films were fabricated by physical vapor deposition method. Also, the properties of dielectric relaxation were studied to understand carrier's behavior of PVDF thin films, to be regarded as the excellent piezo and pyroelectricity. In the process of vapor deposition, the $\beta$-PVDF thin films have been fabricated under the condition of the substrate temperature at 3$0^{\circ}C$, the applied electric field at 142.8kV/cm and the pressure at 2.0${\times}10^{-5}$torr. The dielectric properties of PVDF have been studied in the frequency range 10Hz to 1MHz at temperature from 30 to $100^{\circ}C$. The relative dielectric constant of $\alpha$ and $\beta$-PVDF were 6.8 and 9.8, respectively, under a frequency of 1kHz. Such a phenomenon was caused by the decrease in intermolecular forces originated by the phase-transition from the TGTG' molecular conformation to the TT planar zig-zag conformation. And the relative dielectric constant is increased as a measuring temperature increases, because of the reduction of relaxation time caused by the decrease of intermolecular force.

  • PDF

Characterization of Embedded Thick Film Capacitor in LTCC Substrate (유전체 Paste를 이용한 LTCC 내장형 후막 Capacitor 제작 및 평가)

  • Cho, Hyun-Min;Yoo, Myung-Jae;Park, Sung-Dae;Lee, Woo-Sung;Kang, Nam-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.760-763
    • /
    • 2003
  • Low Temperature Cofired Ceramics (LTCC) technology is a promising technology to integrate many devices in a module by embedding passive components. For the module substrate, most LTCC structures have dielectric constants below 10 to reduce signal delay time. Some components, which need high dielectric constants, have not been yet embedded in LTCC module. So, embedding capacitor with high capacitance by applying another dielectrics with high dielectric constants in LTCC is an important issue to maximize circuit density in LTCC module. In this study, electrical properties of embedded capacitor fabricated by dielectric paste of high dielectric constants (K-100) and co-firing behavior with LTCC were investigated. To prevent camber development of co-fired structure, constrained sintering process was tested. Dielectric properties of embedded capacitors were calculated from their capacitance and impedance value. Temperature coefficient of capacitance were also measured.

  • PDF