DOI QR코드

DOI QR Code

Accurate Measurement of THz Dielectric Constant Using Metamaterials on a Quartz Substrate

  • Park, Sae June (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University)
  • Received : 2017.10.16
  • Accepted : 2017.10.26
  • Published : 2017.12.25

Abstract

We present dielectric constant measurements of thin films using THz metamaterials fabricated on a quartz substrate. The resonance shifts of the metamaterials exhibit saturation behavior with increasing film thickness. The saturation frequency shift varies with the real part of the dielectric constant, from which the numerical expression for the particular metamaterial design was extracted. We first performed finite-difference time-domain simulations to find an explicit relationship between the saturated frequency shift and the dielectric constant of a thin film, which was confirmed by the experimental results from conventional techniques. In particular, the quartz substrate enables us to determine their values more accurately, because of its low substrate index. As a result, we extracted the dielectric constants of various films whose values have not been addressed previously without precise control of the film thickness.

Keywords

References

  1. H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O'Hara, and A. J. Taylor, "Electromagnetic metamaterials for terahertz applications," Terahertz Sci. Technol. 1, 42-50 (2008).
  2. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nat. 444, 597-600 (2006). https://doi.org/10.1038/nature05343
  3. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, "Detection of microorganisms using terahertz metamaterials," Sci. Rep. 4, 4988 (2014).
  4. J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory 47, 2075-2084 (1999). https://doi.org/10.1109/22.798002
  5. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Sci. 312, 1780-1782 (2006).
  6. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Sci. 292, 77-79 (2001). https://doi.org/10.1126/science.1058847
  7. S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, "Sensitive detection of yeast using terahertz slot antennas," Opt. Express 22, 30467-30472 (2014). https://doi.org/10.1364/OE.22.030467
  8. S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, "Sensing viruses using terahertz nano-gap metamaterials," Biomed. Opt. Express 8, 3551-3558 (2017). https://doi.org/10.1364/BOE.8.003551
  9. A. P. Tenggara, S. J. Park, H. T. Yudistira, Y. H. Ahn, and D. Byun, "Fabrication of terahertz metamaterials using electrohydrodynamic jet printing for sensitive detection of yeast," J. Micromech. Microeng. 27 (2017).
  10. S. J. Park, S. W. Jun, A. R. Kim, and Y. H. Ahn, "Terahertz metamaterial sensing on polystyrene microbeads: Shape dependence," Opt. Mater. Express 5, 2150-2155 (2015). https://doi.org/10.1364/OME.5.002150
  11. J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations," Opt. Express 16, 1786-1795 (2008). https://doi.org/10.1364/OE.16.001786
  12. D. J. Shelton, D. W. Peters, M. B. Sinclair, I. Brener, L. K. Warne, L. I. Basilio, K. R. Coffey, and G. D. Boreman, "Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials," Opt. Express 18, 1085-1090 (2010). https://doi.org/10.1364/OE.18.001085
  13. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Nondestructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003). https://doi.org/10.1364/OE.11.002549
  14. A. Menikh, R. MacColl, C. A. Mannella, and X. C. Zhang, "Terahertz biosensing technology: Frontiers and progress," Chemphyschem 3, 655-658 (2002). https://doi.org/10.1002/1439-7641(20020816)3:8<655::AID-CPHC655>3.0.CO;2-W
  15. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  16. R. Woodward, V. Wallace, D. Arnone, E. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-259 (2003). https://doi.org/10.1023/A:1024409329416
  17. S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC Adv. 6, 69381-69386 (2016). https://doi.org/10.1039/C6RA11777E
  18. S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Effective sensing volume of terahertz metamaterial with various gap widths," J. Opt. Soc. Korea 20, 628-632 (2016). https://doi.org/10.3807/JOSK.2016.20.5.628
  19. J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, "Terahertz conductivity of reduced graphene oxide films," Opt. Express 21, 7633- 7640 (2013). https://doi.org/10.1364/OE.21.007633
  20. S. J. Park, A. R. Kim, J. T. Hong, J. Y. Park, S. Lee, and Y. H. Ahn, "Crystallization kinetics of lead halide perovskite film monitored by in-situ terahertz spectroscopy," J. Phys. Chem. Lett. 8, 401-406 (2017). https://doi.org/10.1021/acs.jpclett.6b02691