• Title/Summary/Keyword: Dielectric Antenna

Search Result 426, Processing Time 0.021 seconds

The Design of the Broadband ceramic Dielectric Sntenna for PCS and IMT-2000 Dual Band Application (PCS 및 IMT-2000 이중대역용 광대역 세라믹 유전체 안테나 설계)

  • 문정익;박성욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.996-1005
    • /
    • 2000
  • This paper proposed a novel broadband ceramic dielectric antenna by improving the conventional broadband technique that very high permittivity material is attaching to one side of low permittivity material. The broadband ceramic dielectric antenna can be designed by using our proposed method, and it overcomes the disadvantage of narrow bandwidth problem. For the proposed ceramic dielectric antenna, a 10 dB return-loss bandwidth of 33.9% has been achieved. The measurement and numerical results(Finite Element Method) are performed and confirmed to a good agreement with each other. The proposed ceramic dielectric antenna is designed and implemented to extend enough the coverage of dual band (PCS+IMT-2000).

  • PDF

A Filtering Antenna for Wireless In-Flight Entertainment Communication System at Millimeter-Wave Band (기내 엔터테인먼트 통신 시스템을 위한 밀리미터파 대역의 여파기 결합 안테나)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Cho, Choon-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • In this paper, H-plane filtering-horn antenna operating at millimeter frequency band is proposed with embedded filter and three-layered dielectric lens for frequency selection and maintenance of main beam direction, respectively. The waveguide-typed filter and H-plane sectoral horn antenna are replaced with considerably size-reduced PCB substrate-typed filtering antenna using via fences and several posts. The waveguide-typed filter and H-plane sectoral horn antenna were designed in air-filled waveguide and then combined into size-reduced PCB substrate. For the control of the thickness of dielectric lens, single and multi dielectric lens have been employed. As a result of antenna gain, 8 and 13.5 dBi have been obtained at 41.5 GHz, respectively, from the simulations of single and multi-lens antennas.

A Study on the Characteristics of Dual-band Plastic Chip Antenna for Mobile Terminal using the Foamex Materials (Foamex 매질을 이용한 이동통신 단말기용 듀얼밴드 플라스틱 칩 안테나 특성에 관한 연구)

  • Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.130-135
    • /
    • 2005
  • In this papers, we made study for plastic chip antenna, the plastic is Foamex with the circle of PVC and its electric characteristics are dielectric constant 1.9, insulation intensity 112 KV/cm. The proposed antenna is same as the conventional antennas are usually constructed with ceramic chip, which are not fragile in nature and don't tend to break easily. Therefore the proposed antenna with its advantage is attractive for application in mobile antenna. In order to valid the proposed papers, it is implemented the antennas of four types and experimented. From the results, we conformed that the antennas are operated at the dual band which is cellular band and Korea-PCS band. And the gain of the antennas has about above -2 dB and the pattern is same as conventional antennas. From this papers, the realized antennas using Foamex material will be application for mobile phone antenna.

A Study on Design and Fabrication of Quad-Band Small Antenna with MD(magneto-dielectric) material for mobile Applications (MD 매질을 이용한 이동통신용 Quad-Band 소형 안테나 설계 및 구현에 관한 연구)

  • Kim, Woo-Su;Yoon, Cheol;Oh, Soon-Soo;Kang, Suk-Youb;Park, Hyo-Dal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1270-1276
    • /
    • 2010
  • In this paper, Quad-Band small antenna for GSM850, GSM900, DCS1800, DCS1900 is designed and fabricated. The antenna achieved the size reduction of over 67.9 % than the conventional PIFA(Planar Inverted-F Antenna) by using a MD(Magneto-Dielectric) material. A simple feeding microstrip line is used to feed the antenna from a $50{\Omega}$ coaxial line, which is capacitively coupled to the grounded patch structure for broadband characteristics. The impedance bandwidth the proposed antenna shows good results as broadband characteristics of 1341 MHz (801 ~ 2142 MHz) in VSWR < 3 (${\leq}\;-6\;dB$) and the gain is -6.67 ~ 4.25 dBi in the operating frequency.

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

A Study on the MDAS-DR Antenna for Shaping Flat-Topped Radiation Pattern (구형 빔 패턴 형성을 위한 MDAS-DR 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.323-333
    • /
    • 2007
  • In this paper, a new MDAS-DR antenna structure designed to efficiently shape a flat-topped radiation pattern is proposed. The antenna structure is composed of a stacked micro-strip patch exciter and a multi-layered disk array structure(MDAS) surrounded by a dielectric ring. The MDAS, which was supplied by a stacked microstrip patch exciter with radiating power, can form a flat-topped radiation pattern in a far field by a mutual interaction with the surrounding dielectric ring. Therefore, the design parameters of the dielectric ring and the MDAS structure are important design parameters for shaping a flat-topped radiation pattern. The proposed antenna used twelve multi-layered disk array elements and a Teflon material with a dielectric constant of 2.05. An antenna operated at 10 GHz$(9.6\sim10.4\;GHz)$ was designed in order to verify the effectiveness of the proposed antenna structure. The commercial simulator of CST Microwave $Studio^{TM}$, which was adapted to a 3-D antenna structure analysis, was used for the simulation. The antenna breadboard was also fabricated and its electrical performance was measured in an anechoic antenna chamber. The measured results of the antenna breadboard with a flat-topped radiation pattern were found to be in good agreement with the simulated one. The MDAS-DR antenna gain measured at 10 GHz was 11.18 dBi, and the MDAS-DR antenna was capable of shaping a good flat-topped radiation pattern with a beam-width of about $40^{\circ}$, at least within a fractional bandwidth of 8.0 %.

Design of a Broadband Printing RFID Tag Antenna with Low Performance Degradation Due to Nearby Dielectric Material (근접 유전체에 의한 성능 열화가 적은 광대역 프린팅 태그 안테나 설계)

  • Ji, Sung-Hwan;Han, Won-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.694-700
    • /
    • 2009
  • In this paper, we propose a RFID tag antenna with low performance degradation due to nearby dielectric materials. The proposed antenna is designed to be appropriate for ink printing fabrication. The antenna is designed to operate in UHF band of $860{\sim}960$ MHz. The antenna uses a T-matching network in the middle of the main body and two parasitic patches in vicinity for complex conjugate matching with a commercial tag chip. In addition, the two parasitic patches induce currents at different dielectric constants of nearby dielectric materials. This can minimize the performance degradation due to nearby dielectric materials. The measured results show the half power matching bandwidth from 844 MHT to 1,268 MHz. It exhibits the reading distance of about 3.5 m in free space when the tag antenna is used with the commercial reader antenna (transmitting power of 20 dBm and the reader antenna gain of 6 dBi). When the tag is attached on dielectric materials of wood and FR4, the resulting reading distances are 2.61 m and 2.51 m, respectively.

Miniaturized Broadband ENG ZOR Antenna Using a High Permeability Substrate

  • Ko, Seung-Tae;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.201-206
    • /
    • 2011
  • This paper presents a miniaturized epsilon negative (ENG) zeroth-order resonance (ZOR) patch antenna with an improved bandwidth. The miniaturization and the broad bandwidth of the ENG ZOR patch antenna are achieved by using a meandered via and a high permeability substrate instead of a straight via and a dielectric substrate. The use of a meandered via allows miniaturization of the ENG ZOR patch antenna without narrowing the bandwidth. The use of a high permeability substrate allows further miniaturization of the ENG ZOR patch antenna and improvement of the bandwidth. A high permeability substrate consisting of a multi-layered substrate is designed to have a small material loss. The antenna (kr=0.32) has a 10 dB fractional bandwidth of ~1 %, which is 1.74 times as broad as that of an antenna with a dielectric substrate.

Design and Parametric Study on Discone Antenna for Broadband RF Test Chamber

  • Oh, Soon-Soo;Kim, In-Ryeol;Choi, Dong-Geun;Park, Wook-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.534-538
    • /
    • 2016
  • This paper discusses the characteristics and effects of dielectric inner-supports on discone antenna for broadband RF test chamber, and the verification has been performed by simulation. Several design parameters such as the thickness of the gap support, the position of the side support, and the thickness of the side support has been analyzed. The thickness of the gap support affected the reflection coefficient. An effect of the offset of the side support from the center was slight below 3 GHz and significant above 3 GHz. The thickness of the side support did not affect the reflection coefficient or the gain much. The performance of the fabricated discone antenna was in good agreement with the simulated results. This investigation of a dielectric support effects could be used to design a commercial discone antenna for broadband RF test chamber, focusing on electrical performance and mechanical stability.

Triangular Microstrip Antenna with T-type Slot (T형 Slot을 삽입한 삼각형 안테나)

  • Park, Byoung-Woo;Shin, Hye-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.24-30
    • /
    • 2007
  • This paper observed characteristics of a triangular microstrip patch antenna with T-slot. When a narrow horizontal slot or vertical slot is embedded in a triangular microstrip antenna, we investigated variations of dual resonant frequency according to slot lengths and then we could make a triangular microstrip antenna with T-type slot suitable to a very low dielectric substrate. The proposed antennas used a dielectric substrate which has relative dielectric constant ${\epsilon}_r=3.38$ and a height of 8 [mils] (=0.2032mm) and antenna characteristics of horizontal or vertical slot antennas are compared by a ensemble 8.0 simulator. Theoretical and experimental results of manufactured antennas are compared.