DOI QR코드

DOI QR Code

Miniaturized Broadband ENG ZOR Antenna Using a High Permeability Substrate

  • Ko, Seung-Tae (Department of Electronic and Electrical Engineering, Hongik University) ;
  • Lee, Jeong-Hae (Department of Electronic and Electrical Engineering, Hongik University)
  • Received : 2011.04.01
  • Published : 2011.09.30

Abstract

This paper presents a miniaturized epsilon negative (ENG) zeroth-order resonance (ZOR) patch antenna with an improved bandwidth. The miniaturization and the broad bandwidth of the ENG ZOR patch antenna are achieved by using a meandered via and a high permeability substrate instead of a straight via and a dielectric substrate. The use of a meandered via allows miniaturization of the ENG ZOR patch antenna without narrowing the bandwidth. The use of a high permeability substrate allows further miniaturization of the ENG ZOR patch antenna and improvement of the bandwidth. A high permeability substrate consisting of a multi-layered substrate is designed to have a small material loss. The antenna (kr=0.32) has a 10 dB fractional bandwidth of ~1 %, which is 1.74 times as broad as that of an antenna with a dielectric substrate.

Keywords

References

  1. J. H. Park, Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative $zero^{th}$-order resonator antenna," IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3710-3712, Dec. 2007. https://doi.org/10.1109/TAP.2007.910505
  2. K. D. Jang, J. H. Kim, D. H. Lee, G. H. Kim, W. M. Seong, and W. S. Park, "A small CRLH-TL metamaterial antenna with a magneto-dielectric material," IEEE Antennas and Propagation Society International Symposium, Jul. 2008. https://doi.org/10.1109/APS.2008.4619284
  3. S. T. Ko, B. C. Park, J. H. Park, and J. H. Lee, "Small epsilon negative ZOR antenna with improved bandwidth," The Journal of Korea Electromagnetic Engineering Society, vol. 19, no. 8, pp. 920-926, Apr. 2008. https://doi.org/10.5515/KJKIEES.2008.19.8.920
  4. H. Mosallaei, K. Sarabandi, "Magneto-dielectrics in electromagnetics: concept and applications," IEEE Trans. Antennas Propag., vol. 52, no. 3, pp. 1558- 1567, Jun. 2004. https://doi.org/10.1109/TAP.2004.829413
  5. S. T. Ko, J. H. Lee, "Miniaturized ENG ZOR antenna with high permeability material," IEEE Antennas and Propagation Society International Symposium, Jul. 2010. https://doi.org/10.1109/APS.2010.5561736
  6. J. K. Ji, G. H. Kim, and W. M. Seong, "Bandwidth enhancement of epsilon negative zeroth-order resonator antennas using a Co2Y hexagonal ferrite helical loading," Microwave Opt. Tech. Lett., vol. 53, no. 1, pp. 87-90, Jan. 2011. https://doi.org/10.1002/mop.25650
  7. A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1252-1263, 2004. https://doi.org/10.1109/TMTT.2004.825703
  8. D. M. Pozar, Microwave Engineering, New York: Wiley, 1998.
  9. R. C. Hansen, M. Burke, "Antennas with magneto- dielectrics," Microwave Opt. Tech. Lett., vol. 26, no. 2, pp. 75-78, Jul. 2000. https://doi.org/10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W
  10. http://www.trans-techinc.com

Cited by

  1. Compact Metamaterial-Based Tunable Zeroth-Order Resonant Antenna with Chip Variable Capacitor vol.13, pp.3, 2013, https://doi.org/10.5515/JKIEES.2013.13.3.189
  2. A small Inverted-F Antenna with adjustable characteristics using lumped elements vol.17, pp.6, 2013, https://doi.org/10.12673/jkoni.2013.17.6.646