• 제목/요약/키워드: Die stress analysis

검색결과 230건 처리시간 0.024초

승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화공정해석 (Cure simulation in LED silicone lense using dynamic reaction kinetics method)

  • 송민재;홍석관;박정연;이정원;김흥규
    • Design & Manufacturing
    • /
    • 제8권2호
    • /
    • pp.46-49
    • /
    • 2014
  • Silicone is recently used for LED chip lense due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for curing process during silicone molding. For analysis of curing process, a dynamic cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the slow cure reduced abrupt reaction heat and it was predicted decrease of the residual stress.

  • PDF

멀티빌렛을 사용한 압출굽힘가공의 성형 해석 (Forming Simulation of Extru-Bending Process Using Multi-Billets)

  • 박대윤;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.120-123
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets inside die chamber after passing the multi-hole container. The curvature can be controlled by the two variables, the one of them is the different velocity of billets through the multi-hole container, the other is the difference of hole diameter. The bending phenomenon during extruding using four billets can be obtained by the difference of hole diameters in the multi-hole container or by the difference of relative velocity of billet inserted in the container. As results of DEFORM-3D analysis, it can be shown that bending can be obtained during extruding by the difference of relative velocity of two billets or by the difference of hole diameter, and the amount of curvature is increased by the difference of velocity and diameter. According to the shape of products, the curvature of rectangular section is bigger than the curvature of regular square section. And, it is estimated that, because the stress on the welding line is much higher than yield stress of material, the bonding of four billets can be obtained.

  • PDF

층상복합재료의 직접/간접압출공정해석의 비교 (A Comparison of Direct/Indirect Extrusion Process Analysis of Clad Composite Materials)

  • 김정인;권혁천;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 압출 및 인발 심포지엄
    • /
    • pp.9-19
    • /
    • 1999
  • A clad material is a different type of the typical composites which is composed of two or more materials joined at their interface surface. The advantage of clad material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneouly. This paper is concerned with the direct and indirect extrusion process of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copper-clad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and moan stress for some sheath thicknesses, die exit diameters and die temperatures.

  • PDF

강-열점소성 유한요소법을 이용한 반용융단조시 성형인자들의 영향에 관한 연구 (A Study on Effect of Forming Parameters in Semi-Solid Forging by Rigid-Thermoviscoplastic Finite Element Method)

  • 윤종훈;김낙수;임용택;이준두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.179-184
    • /
    • 1998
  • Semi-solid forging can be applied in industry only with enough knowledge of the effects of the forming parameters related with the process and their exact control which can be obtained by empirical or numerical methods. In the current study, the effects of process variables on semi-solid forging are discussed based on mainly numerical results. Die preheating temperature, initial solid fraction of the workpiece, and die velocity were selected as process variables, and numerical analyses using a rigid-thermoviscoplastic finite element approach that considered the release of latent heat due to phase change were carried out. In the analyses, a proposed flow stress material characterization and a solid fraction updating algorithm were employed. The obtained results from numerical analysis are discussed and are compared with some experimental observations.

  • PDF

초미세 결정립 조직을 만들기 위한 복합전단가공법에 관한 연구 (A Study on the Hybrid-ECAP Process to Produce Ultra-Fine Materials)

  • 이주현;이진호
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.83-91
    • /
    • 2008
  • The development of the equal channel angular pressing(ECAP) process in metals has recently provided a feasible solution to produce ultra-fine or nano-grained bulk materials with tailored material properties. However, ECAP process is difficult to scale up commercially due to requirements of an excessive load. In this paper, a new Hybrid-ECAP process with torsional die is considered to obtain materials of ultra-fine grain structure under low forming load. An upper bound analysis and numerical simulation (DEFORM 3D, a commercial FEM code) are carried out on the torsional die. By the upper bound analysis, analytical expression for the compression force and rotation speed are obtained. By the FEM analysis, the distribution of strain, stress and deformation are obtained. These results show that the Hybrid-ECAP is a useful process because this process can obtain the homogeneous deformations with relatively low forming load. Additionally, due to decreased forming load, die life can be improve.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging)

  • 권진욱;이정환;이영선;권용남;배원병
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

포트홀 형상이 컨덴서 튜브 직접 압출 공정 및 금형 탄성 변형에 미치는 영향 (The Effect of Porthole Shape on Elastic Deformation of Die and Process at Condenser Tube Extrusion)

  • 이정민;김병민;조훈;조형호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.315-318
    • /
    • 2003
  • Recently, condenser tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

  • PDF

강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석 (An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method)

  • 조현중;박종진;김낙수
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

FTM과 RSM을 이용한 후방 압출 금형 설계 (Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology)

  • 허관도;여홍태;최영
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A study of interface heat transfer coefficient between die and workpiece for hot forging)

  • 권진욱;이영선;권용남;이정환;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF