• Title/Summary/Keyword: Die Height

Search Result 168, Processing Time 0.02 seconds

Investigation of the Optimal Forging Condition in Open Die Forging with the Flat Die (평다이를 사용한는 자유 단조 공정의 최적 단조 조건에 관한 연구)

  • 조종래;김동권;이부윤;양동열
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.141-150
    • /
    • 1995
  • The purpose of the open die press forging is to maximize the internal deformation for better structural homogeneity and center-line consolidation in case of the ingot. A two and three dimensional viscoplastic finite element analysis is carried out for the plate, cylinder and square forging with the flat die in order to study the forging effects during the process. Effect of width, height reduction, and die staggering are studied through simulation of the process. Thus favorable working conditions are suggested for better and more disirable product quality.

  • PDF

DIMENSIONAL ACCURACY OF EPOXY RESINS AND THEIR COMPATIBILITY WITH IMPRESSION MATERIALS (EPOXY RESIN의 정확도와 인상재와의 친화성에 관한 연구)

  • Chang, Su-Kyoung;Chang, Ik-Tae;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.383-394
    • /
    • 1999
  • The indirect technique for making cast restoration requires that dies be as accurate and durable as possible. Currently, stone is the most commonly used material for die. However, it has some problems such as the weakness in its strength and low abrasion resistance. Recently, epoxy resin die systems have become available. The purpose of this study was to examine two commercially available resin die systems and evaluate some characteristics for their clinical performance. This study evaluated the dimensional accuracy of epoxy resins and their wettability with impression materials. In this study, the first experiment was about dimensional accuracy of different die materials. The master model was made of stainless steel. 10 models were made of two epoxy resins (Die-epoxy, Tri-epoxy) and a die stone (Fujirock) each. Occlusal diameter (Dimension I), occluso-gingival height (Dimension II), and interabutment distance (Dimension III) were measured in each model. Next, the contact angles of die materials with impression materials were observed. The blocks were made of polyether, hydrophilic additional silicone, polysulfide impression materials. By drop-ping the same amount (0.05ml) of Tri-epoxy, Die-epoxy, and die stone on the blocks, 10 samples of each die material were made. After setting of materials, the contact angles were measured. The results of this study were as follows. 1. The expansion of stone die and the shrinkage of resin dies in occlusal diameter were observed, and stone and Tri-epoxy were expanded and Die-epoxy was shrinked in occluso-gingival height. There was little change among materials in interabutment distance (p<0.05). 2. In comparison with the master model Tri-epoxy had the least variation in measurement of the three die systems examined. Die-epoxy was next, and die stone showed the greatest variation. 3. The compatibility of die stone for polyether, hydrophilic additional silicone, polysulfide decreased in order, wherease epoxy materials had the decreased compatibility for polyether and polysulnde, hydrophilic additional silicone in order. It was not statistically different between polyether and polysulfide (p<0.05). 4. The contact angles of Tri-epoxy, Die-epoxy, die stone were getting bigger in order.

  • PDF

Heating and Cooling Channel Design of Cross-Shaped Die for Warm Forming of Magnesium Alloy Sheet (Mg 온간성형을 위한 십자형상 금형의 가열/냉각 채널 설계)

  • Choi, S.C.;Ko, D.S.;Kim, H.Y.;Kim, H.J.;Hong, S.M.;Ryu, S.Y.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.370-373
    • /
    • 2008
  • It is known that the temperatures of die, punch, holder and punch pad need to be kept different to get better formability in Mg sheet forming processes. Heating and cooling channels are usually equipped in each tool to assign different temperature. This study focused on the optimal design of the heating and cooling channels for a cross-shaped deep drawing die set. While the die and blankholder were heated to and kept at $250^{\circ}C$ by using heat cartridges, the punch and punch pad were kept at much lower temperature than that of the die and blankholder by water circulating through cooling channels. All the approaches were done by numerical analyses, aiming to maximize the cup height and to minimize the punch corner radius without any failure.

  • PDF

Development of Fine Blanking Die with Fluid Chamber and its Application to Procuction of Circular Blanks in a Hydraulic Press (간이 파인 블랭킹 금형의 개발을 통한 범용 유압 프레스에서의 원형 정밀진단 가공성 연구)

  • Kim, J.H.;Ryu, J.G.;Chung, W.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.157-163
    • /
    • 1996
  • This paper is concered on the development of low-cost fine blanking die with two fluid chambers of which the pressure can be controlled by a hydraulic unit and its application to producting circular blanks in a conventional hydraulic press, not in a special triple-action press usually adopte in fine blanking operation. Four important working parameters affecting on the precision accuracy of products such as existence and position of Vee-ring, stripping force and counter punching force are primarily considered for experiments. Finite element analysis by suing ABAQUA software is approxi- mately made for blanking of circular specimen with a flat stripper plate and then compared with experimental measurements. The the theoretical prediction of camber height which represents deflection of a dish-shaped specimen after blanking seems to give a qualitatively good agreement. It is shown through experiments the the camber height decreases with decreasing stripping force and also with increasing counter punching force, but particularly depending on the latter much more than the former.

  • PDF

Temperature Effect On Warm Deep Drawability of Rectangular Cup Using Local Heating of Dies (금형의 국부적인 가열에 의한 사각통의 온간 디프로드로잉 성형성에 미치는 온도의 효과)

  • Kim, Chang-Ho;Park, Dong-Hwan;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.53-59
    • /
    • 1996
  • Warm deep drawing of single-action dies using local heating has appeared to be an alternative attractive production method of multi-operation die sets generally used at room temperature in deep drawing of rectangular cup. Uniaxial tensile tests and deep drawing tests of various materials are carried out and the effect of temperature on tensile properties and drawability are examined at temperatures up to 200 .deg. C under three kinds of lubricants of teflon film, vinyl film and drawing oil. Good formability is achieved when punch and die temperature were differentiated intentionally in order to get large tensile strength(TS) at punch shoulder protion and small TS at die side. Throughout the experiments, it has been shown that the limiting drawing height of STS316L was increased with heating die and blank holder at 100 .deg. C, but that of STS430 wasn't. When vinyl or teflon film was attached on the plates, the drawability was increased considerably.

  • PDF

Forming Characterististics of Radial-Backward Extrusion for Single Action Pressing (단동 프레싱에 의한 레이디얼-후방압출의 성형특성)

  • Jang, Dong-Hwan;Ko, Beong-Du;Lee, Yeong-Sub;Hwang, Beong-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.76-83
    • /
    • 2001
  • This paper is concerned with the analysis of the forming characteristics of radial-backward extrusion. The single action pressing is analyzed by using the rigid-plastic FEM. The design factors such as die corner radius, gap height, and friction factor are involved in the simulation. The analysis is focused on the influences of the design factors on the maximum punch farce and metal flow into can and flange region. As a result of analysis, the gap height among the design factors is known to have a major effect on the metal flow of radial-backward extrusion for single action pressing compared with other design factors. As is expected, forming load and volume of flange increase as gap height and die corner radius increase, respectively.

  • PDF

The Low Height Looping Technology for Multi-chip Package in Wire Bonder (와이어 본더에서의 초저 루프 기술)

  • Kwak, Byung-Kil;Park, Young-Min;Kook, Sung-June
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.17-22
    • /
    • 2007
  • Recent new packages such as MCP(Multi-Chip Package), QDP(Quadratic Die Package) and DDP(Dual Die Package) have stack type configuration. This kind of multi-layer package is thicker than single layer package. So there is need for the low height looping technology in wirebonder to make these packages thinner. There is stiff zone above ball in wirebonder wire which is called HAZ(Heat Affect Zone). When making low height loop (below $80\;{\mu}m$) with traditional forward loop, stiff wire in HAZ(Heat Affected Zone) above ball is bended and weakened. So the traditional forward looping method cannot be applied to low height loop. SSB(stand-off stitch) wire bonding method was applied to many packages which require very low loops. The drawback of SSB method is making frequent errors at making ball, neck damage above ball on lead and the weakness of ball bonding on lead. The alternative looping method is BNL(ball neckless) looping technology which is already applied to some package(DDP, QDP). The advantage of this method is faster in bonding process and making little errors in wire bonding compared with SSB method. This paper presents the result of BNL looping technology applied in assembly house and several issues related to low loop height consistence and BNL zone weakness.

  • PDF

A Study on the Effect of Pin Height on Weld Strength in Extru-Rivet Spot Welding of Aluminum Plates (알루미늄 판재의 전기저항가열 압출점접합공정에 있어서 핀의 높이가 접합강도에 미치는 영향에 관한 연구)

  • Lee, S.J.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.282-288
    • /
    • 2014
  • It is difficult to control welding variables during spot welding of non-ferrous metals like aluminum because of the low electrical resistance of the material. It has been suggested that a solid state welding process such as friction stir spot welding or extru-spot welding can be used to spot weld aluminum plates. In the extru-spot welding, there is a need to increase the weld strength by improving the shape of the welding die. The current study shows that the weld strength for an extru-spot welding can be increased by using a pin placed on the inside of the upper electrode in the welding die. In the current study, the deformed shape of the insert rivet and the stress distribution in the welding zone were analyzed by simulation. Extru-rivet spot welding experiments were performed by changing the height of pin on the inside of the upper electrode. From the experimental result, it is shown that the weld strength for an extru-rivet spot welding can be increased by adjusting the height of the pin. The optimal shape of the deformed rivet after the extru-rivet spot welding can be observed from the simulation results. The deformed shape of the insert rivet can also be controlled by the height of pin.

The Material Flow according to Die Geometry in Can-Flange Forming (Can-Flange 성형에서 금형형상에 따른 소재 유동특성)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.42-47
    • /
    • 2012
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. We have discussed the influences of tool geometry such as punch nose angle, relative gap height, die corner radius on material flow and surface expansion into can and flange region. To analyse the process, numerical simulations by the FEM and experiment by physical modeling using Al alloy as a model material have been performed. Based on the results, the influence of fixed parameters on the distribution of divided material flow and surface expansion are obtained.

  • PDF

Determination of Forming Conditions of Fitting Pipes using Press Forming Processes (프레스 포밍 공정을 이용한 피팅 파이프 성형 조건 선정)

  • Kim, Tae-Gual;Park, Young-Chul;Park, Kyoung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • The press bulging process is very useful and productive method to produce round-type mechanical components which have not been able to be manufactured because of limitation of the conventional press technology. The application of the press bulging process has expanded very quickly in the hydraulic and electronic industry and more recently it has been used to produce other mechanical parts such as the automobile and shipping parts. This expanding application also has brought some unsolved problems and leads many researchers to put their effort into the die design of the press bulging process. In this study, to obtain the optimum die shape for the press bulging process, various process parameters have been considered such as corner radius, bulging height, pressing length, and forming load, etc. The main interest of this paper is to verify the press bulging process which has more than 4.0 in height-length ratio. From this aspect, Finite Element analysis shows great ability to simulate the precise deformation process and gives us manufacturing database. Consideration of strain, stress, and strain-rate for the various cases has been also taken to keep the forming load within a particular range.