• Title/Summary/Keyword: Diamond powder

Search Result 115, Processing Time 0.031 seconds

High Pressure X-ray Diffraction Studies on a Natural Talc (천연산 활석에 대한 고압 X-선 회절연구)

  • 김영호;이지은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • Talc (Mg3Si4O10(OH)2), one of the sheet silicate minerals, which is the hydrothermal alteration product of serpentinite at Cheongarm mine was prepared for the high pressure compressibility studies. Energy dispersive X-ray diffraction experiment was carried out using the Synchrotron Radiation with the Mao-Bell type diamond anvil cell at room temperature. Polycrystalline talc was mixed with MgO powder for pressure sensor as well as pressure medium in the sample chamber. High pressure runs were performed at pressures up to 35.2 GPa. Talc shows no phase transition within the present high pressure region. Bulk modulus of this talc was determined by the Birch-Murnaghan equation of state to be 78 GPa assuming its first pressure derivative Ko' of 4.

  • PDF

A Study on Ball Screw Polishing Using Magnetic Assisted Polishing (자기연마법을 이용한 볼나사의 연마가공에 관한 연구)

  • 이용철;이응숙;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.43-47
    • /
    • 1995
  • The ball screw is one of the important mechanical parts for the linear motion feeding systems. The usage of the ball screw has been growing in various industrial fields such as CNC machine tool, industrial robot and automated systems. Because of ever increasing demand for ball screws, increased accuracy and quality of the ball screw is needed,especially the surface roughness of the ball contact area in order to diminish noise and vibration. Therefore to improve the surface roughness of the area,we introduced magnetic assisted polishing which is one of the new potential polishing methods. In this study, diamond slurry and iron powder was used for magnetic assisted polishing of the ball bearing surface. This polishing process was experimentally confirmed to improve the surface roughness of the ball bearing.

  • PDF

Investigation on the Effect of the Nano-diamond Powder on the Surface Properties of Chromium Composite Layers (나노 다이아몬드 분말이 크롬 복합 도금층의 표면 물성에 미치는 영향 연구)

  • ;Hue, N.V.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.85-86
    • /
    • 2007
  • 상용으로 사용되고 있는 Sargent bath에 수십 나노크기의 다이아몬드 분말을 혼입하여 전기도금법에 의해 매우 우수한 표면 특성을 갖는 크롬 복합 도금층을 얻었다. 상기 복합 도금층은 순수 크롬 도금층의 미세 경도(Hy. 801)보다 높은 값(Hy. 920)을 나타내었고, 내마모성은 약 3-4배 뛰어난 성능을 보였다. 또한, NaCl 수용액에서 수행한 내식성 테스트에서는 크롬 복합 도금층이 순수 크롬 도금층대비 1/6 수준의 passive current를 가졌다. SEM을 통한 표면 형상 관찰 결과 크롬 도금층에 혼입된 나노 다이아몬드 분말은 단결정 혹은 다결정의 형태로 존재하였다.

  • PDF

High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase (LiFePO4/C-유사 감람석 결정구조에 대한 고압 X-선회절연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2013
  • Synthetic carbon-coated olivine-like structured lithium iron phosphate ($Li^+Fe^{2+}(PO_4)^{3-}/C$) powder composites were compressed up to 35.0 GPa in the symmetrical diamond anvil cell at room temperature. Bulk modulus of $LiFePO_4/C$ was determined to be $130.1{\pm}10.3$ GPa. New peak appears at the d-spacing of 3.386 ${\AA}$ above 18 GPa, and another new one at 2.854 ${\AA}$ around 35 GPa. The crystallographic symmetry of the sample (i.e. orthorhombic) is apparently retained up to 35 GPa as no clear evidence for the phase transition into spinel structure has been observed. The pressure-induced volume change in the M1 site ($Li^+O_6$) is more significant than those in M2($Fe^{2+}O_6$) and $PO_4$ tetrahedral sites.

Compressibility of $FeS_{2}$ ($FeS_{2}$의 압축성 연구)

  • Kim, Young-Ho;Hwang, Gil-Chan;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.189-195
    • /
    • 2006
  • Compression work on a pyrite powder has been carried out using energy dispersive X-ray diffraction (EDXRD) with Mao-Bell type diamond anvil cell (DAC) and synchrotron radiation(SR) at room temperature. It has been reported the bulk moduli of pyrite show the large variations depending on the experimental conditions as well as the apparatus used. Thus, two kinds of sample in different pressure transmitting media of both NaCl and MgO powder emerged in alcoholic fluids were subjected to measure their compressibilities. Bulk moduli thus obtained are 138.9 GPa and 198.2 GPa, respectively, and this result contradicts to the anticipated values according to the hydrostaticity conditions of the sample chamber. This might be due to the alcoholic fluids phase transition mainly with the side effects from the difference of both solid state detector (SSD) used and E*d value applied. All experiments were performed at the Beam Line 1B2 of Pohang Light Source (PLS).

Microstructure and Mechanical Properties of Hardmaterials

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.6-6
    • /
    • 1994
  • Har dmaterials such as cemented carbides with or without coated layer, cermets, ceramics and diamond or c-BN high pressure sintered compact are used for cutting tools, wear -resistant parts, rock drilling bits and/or high pressure vessels. These hardmaterials contain not only hard phase, but also second consituent as the element for forming ductile phase and/or sintering aid, and the mechanical properties of each material depend on (1) the amount of the second constituent as well as (2) the grain size of the hard phase. The hardness of each material mainly depends on these two factors. The fracture strength, however, largely depends on other microstructur a1 factors as well as the above two factors. For all hardmaterials, the fracture strength is consider ably affected by (3) the size of microstructur a1 defect which acts as the fracture source. In cemented carbides, the following factors which are generated mainly due to the addition of the second constituent are also important; (4) the variation of the carbon content in the normal phase region free from V-phase and graphite phase, (5) the precipitation of $Co_3$ during heating at about $800^{\circ}C$,(6) the domain size of binder phase, and (7) the formation of ${\beta}$-free layer or Co-rich layer near the surface of sintered compacts. For cemented carbides coated with thin hard substance, the important factors are as follows; (8) the kind of coated substance, (9) the formation of ${\eta}$-phase layer at the interface between coated layer and substrate, (10) the type of residual stress (tension or compression) in the coated layer which depends on the kind of coating method (CVD or PVD), and (11) the properties of the substrate, and (12) the combination, coherency and periodicity of multi-layers. In the lecture, the details of these factors and their effect on the strength will be explained.

  • PDF

A STUDY ON THE VOND STRENGTH OF PORCELAIN LAMINATE AND COMPOSITE RESIN CEMENTS (라미네이트 도재와 복합레진 시멘트의 결합강도에 관한 연구)

  • Kim, Sung-Il;Lim, Ho-Nam;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.91-109
    • /
    • 1991
  • The purpose of this study were to comfirm the effects of the thickness and kinds of porcelain, etchants, illumination time, elapsed time for the measurement, and chemical cure component to the bond strength of porcelain laminate and composite resin cement, and to compare the effects between the light cured resin and the dual cured resins. The etched porcelain surface, the sectioned surface crossing porcelain and resin after bonding, and the debonded surfaces were observed by the SEM. One product of laminate porcelain powder, one light cured resin and two dual cured resins were selected. Each resin cements are lightened through the thin porcelain disc which was cut from cylindrical porcelain specimen by the diamond saw, and by the light through the porcelain disc they were bonded. Changes of thickness and kinds of porcelain, etchants, illumination time, and the elapsed time for the measurement were considered as variables for the bond strength. And the bond strength of porcelain and dual cured resins under the conditions of autopolymerization or the removal of chemical cure component were measured and compared. Bond strength were measured by shear stress. The etched surface, the cross-sectioned surface, and the debonded surface of porcelain or resin were observed by SEM. On the summary of this study, the following conclusions can be stated; 1. Bond strength of light cured resin was decreased inversely by the thickened porcelain laminate and showed the lowest value to the masking dentin porcelain among 4 kinds of porcelain powder. 2. Bond strength of autopolymerization of dual cured resin without illumination in dark chamber were from 75% to 98% to the data of dual cured resin with illumination. 3. Bond strength of dual cured resin used without chemical cured components were same to them of light cured resin. 4. Cross-sectioned surface treated by silane did not show the gap between the porcelain and resin. 5. Illumination over 80 seconds did not make the significant increase of bond strength on all kinds of resin.

  • PDF

Coatings Properties and Efficiency Performance of Cr-DLC Films Deposited by Hybrid Linear Ion Source for Hydraulic Gear Pump (하이브리드 선형이온원에 의한 유압 기어펌프용 Cr-DLC코팅막의 특성과 효율성능)

  • Cha, Sun-Yong;Kim, Wang-Ryeol;Park, Min-Suk;Kwon, Se-Hun;Chung, Won-Sub;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • This paper describes the results of the application of Cr-Diamond-like carbon (DLC) films for efficiency improvement through surface modification of spur gear parts in the hydraulic gear pump. Cr-DLC films were successfully deposited on SCM 415 substrates by a hybrid coating process using linear ion source (LIS) and magnetron sputtering method. The characteristics of the films were systematically investigated using FE-SEM, nano-indentation, sliding tester and AFM instrument. The microstructure of Cr-DLC films turned into the dense and fine grains with relatively preferred orientation. The thickness formed in our Cr buffer layer and DLC coating layer were obtained the 487 nm and $1.14\;{\mu}m$. The average friction coefficient of Cr-DLC films considerably decreased to 0.15 for 0.50 of uncoated SCM415 material. The hardness and surface roughness of Cr-DLC films were measured 20 GPa and 10.76 nm, respectively. And then, efficiency tests were performed on the hydraulic gear pump to investigate the efficiency performance of the Cr-DLC coated spur gear. The experimental results show that the volumetric and mechanical efficiency of hydraulic gear pump using the Cr-DLC spur gear were improved up to 2~5% and better efficiency improvement could be attributed to its excellent microstructure, higher hardness, and lower friction coefficient. This conclusion proves the feasibility in the efficiency improvement of hydraulic gear pump for industrial applications.

Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions (로소나이트(Lawsonite)의 압력에 따른 등방성 압축거동 연구)

  • Im, Junhyuck;Lee, Yongjae
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Powder samples of natural lawsonite (Ca-lawsonite, $CaAl_2Si_2O_7(OH)_2{\cdot}H_2O$) was studied structurally up to 8 GPa at room temperature using monochromatic synchrotron X-ray powder diffraction and a diamond anvil cell (DAC) with a methanol : ethanol : water (16 : 3 : 1 by volume) mixture solution as a penetrating pressure transmitting medium (PTM). Upon pressure increase, lawsonite does not show any apparent pressure induced expansion (PIE) or phase transition. Pressure-volume data were fitted to a second-order Birch-Murnaghan equation of state using a fixed pressure derivative of 4 leading to a bulk modulus ($B_0$) of 146(6) GPa. This compression is further characterized to be isotropic with calculated linear compressibilities of ${\beta}^a=0.0022GPa^{-1}$, ${\beta}^b=0.0024GPa^{-1}$, and ${\beta}^c=0.0020GPa^{-1}$.

A preliminary study on the surface finishing of a hard disk slider using magnetorheological (MR) fluid (자기유변유체를 이용한 하드디스크 슬라이더의 표면연마를 위한 기초연구)

  • Jung, B.S.;Jang, K..I.;Min, B..K.;Lee, S.J.;Seok, J.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • Surface finishing using magnetorheological (MR) fluid is useful to finish small but not too small workpieces such as those in a few millimeter scale. However, due to the high surface hardness, this finishing process does not seem to be suit for applying to a hard disk slider. In this work, a preliminary study is performed on the finishing of the hard disk slider surface with a mixture of an MR fluid and diamond powder. During a wheel type MR finishing process, centrifugal force is found to be a major factor to cause a reduction in material remove rate (MRR), which is supported by a theoretical model. To facilitate this founding, the rotational speed of tool is confined to 500rpm while a rectilinear alternating motion with the mean speed, which is equivalent to the rotational speed, is additionally applied to the workpieces. As a consequence, MRR of about 2 times of the sole rotational case is obtained. This paper shows that MR finishing process can be used to polish a hard material in millimeter scale efficiently by controlling the speeds of the tool and the workpiece.

  • PDF