DOI QR코드

DOI QR Code

Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions

로소나이트(Lawsonite)의 압력에 따른 등방성 압축거동 연구

  • Im, Junhyuck (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Yongjae (Department of Earth System Sciences, Yonsei University)
  • 임준혁 (연세대학교 지구시스템과학과) ;
  • 이용재 (연세대학교 지구시스템과학과)
  • Received : 2015.12.02
  • Accepted : 2016.02.29
  • Published : 2016.02.28

Abstract

Powder samples of natural lawsonite (Ca-lawsonite, $CaAl_2Si_2O_7(OH)_2{\cdot}H_2O$) was studied structurally up to 8 GPa at room temperature using monochromatic synchrotron X-ray powder diffraction and a diamond anvil cell (DAC) with a methanol : ethanol : water (16 : 3 : 1 by volume) mixture solution as a penetrating pressure transmitting medium (PTM). Upon pressure increase, lawsonite does not show any apparent pressure induced expansion (PIE) or phase transition. Pressure-volume data were fitted to a second-order Birch-Murnaghan equation of state using a fixed pressure derivative of 4 leading to a bulk modulus ($B_0$) of 146(6) GPa. This compression is further characterized to be isotropic with calculated linear compressibilities of ${\beta}^a=0.0022GPa^{-1}$, ${\beta}^b=0.0024GPa^{-1}$, and ${\beta}^c=0.0020GPa^{-1}$.

자연산 로소나이트(Ca-Lawsonite, $CaAl_2Si_2O_7(OH)_2{\cdot}H_2O$) 분말의 압력증가에 따른 변화와 구조적 특성을 소형 압력 발생장치인 다이아몬드 앤빌셀과 실시간 싱크로트론 X-선 회절실험을 통하여 확인하였다. 본 연구에서 시료에 적용한 압력은 1 기압에서 8 GPa 까지였으며 메탄올, 에탄올, 물의 혼합 용액을 압력 매개체로 하여 상온조건에서 실험하였고, 특이한 상전이나 압력하 부피변화의 이상현상은 발견되지 않은 가역적 압축특성을 관찰하였다. 최고압력까지 로소나이트는 결정성을 잃지 않는 것으로 확인되었고 압력증가에 따른 체적감소를 통해 체적탄성률($B_0$)을 계산해 본 결과 146(6) GPa로 도출되었다. 체적탄성률과 함께 계산된 선형압축률은 a-, b-, c-축에서 각각 0.0022, 0.0024, $0.0020GPa^{-1}$로 압력에 의한 부피감소는 대체적으로 3축이 같은 비율로 감소하는 것을 확인하였다.

Keywords

References

  1. Angel, R.J. (2000) Equations of state. In: Hazen RM, Downs RT, (eds). Reviews in mineralogy and geochemistry: high-temperature and high-pressure crystal chemistry, vol 41. The Mineralogical Society of America, Washington, DC, p.35-58.
  2. Baur, W.H. (1978) Crystal structure refinement of lawsonite. American Mineralogist, v.63, p.311-315..
  3. Bell, P.M. and Mao, H.K. (1979) Absolute pressure measurements and their comparison with the ruby fluorescence (R1) pressure scale to 1.5 Mbar. Carnegie Institution, Washington Year Book, v.78, p.665-669.
  4. Mao, H.K., Xu, J. and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, v.91, p.4673-4676. https://doi.org/10.1029/JB091iB05p04673
  5. Chinnery, N., Pawley, A.R. and Clark, S.M. (2000) The equation of state of lawsonite to 7 GPa and 873 K, and calculation of its high pressure stability. American Mineralogist, v.85, p.1001-1008. https://doi.org/10.2138/am-2000-0715
  6. Comodi, P. and Zanazzi, P.F. (1996) Effects of temperature and pressure on the structure of lawsonite. American Mineralogist, v.81, p.833-841. https://doi.org/10.2138/am-1996-7-805
  7. Daniel, I., Fiquet, G., Gillet, P., Schmidt, M.X. and Hanfland, M. (2000) High-pressure behavior of lawsonite: a phase transition at 8.6 GPa. European Journal of Mineralogy, v.12, p.721-733. https://doi.org/10.1127/0935-1221/2000/0012-0721
  8. Diessel, C.F.K., Brothers, R. and Black, P.M. (1978) Coalification and graphitization in high-pressure schists in New Caledonia. Contributions to Mineralogy and petrology, v.68, p.63-78. https://doi.org/10.1007/BF00375447
  9. Dorsam, G., Liebscher, A., Wunder, B., Franz, G. and Gottschalk, M. (2011) Synthesis of Pb-zoisite and Pblawsonite. Neues Jahrbuch fur Mineralogie - Abhandlungen, v.188, p.99-110 https://doi.org/10.1127/0077-7757/2011/0184
  10. Essene, E.J., Fyfe, W.S. and Turner, F.J. (1965) Petrogenesis of Franciscan glaucophane schists and associated metamorphic rocks, California. Contributions to Mineralogy and petrology, v.11, p.695-704 https://doi.org/10.1007/BF01128709
  11. Gatta, G.D. and Lee, Y. (2014) Zeolites at high pressure: A review. Mineralogical Magazine, v.78(2), p.267-291. https://doi.org/10.1180/minmag.2014.078.2.04
  12. Hazen, R.M. and Finger, L.W. (1982) Comparative crystal chemistry. Wiley, New York.
  13. Helmstaedt, H. and Doig, R. (1975) Eclogite nodules from kimberlite pipes of the colorado Plateau - samples of subducted Franciscan-type oceanic lithosphere. Physics and Chemistry of the Earth, v.9, p.95-111. https://doi.org/10.1016/0079-1946(75)90010-5
  14. Im, J., Lee, Y., Douglas, A.B., Vogt, T. and Lee, Y. (2016) High-pressure and high-temperature transformation of Pb(II)-natrolite to Pb(II)-lawsonite. Dalton Transaction, v.45, p.1622-1630. https://doi.org/10.1039/C5DT03695J
  15. Larson, A.C. (1986) GSAS; general structure analysis system. Los Alamos National Laboratory, New Mexico.
  16. LeBail, A., Duroy, H. and Fourquet, J.L. (1988) Ab-initio structure determination of $LiSbWO_6$ by powder X-ray diffraction. Materials Research Bulletin, v.23, p.447-452. https://doi.org/10.1016/0025-5408(88)90019-0
  17. Lee, Y., Hriljac, J.A., Studer, A. and Vogt, T. (2004) Anisotropic compression of edingtonite and thomsonite to 6 GPa at room temperature. Physics and Chemistry of Minerals, v.31, p.22-27. https://doi.org/10.1007/s00269-003-0330-6
  18. Lemonnier, M., Fourme, R., Rosseaux, F. and Kahn, R. (1978) X-ray curved-crystal monochromator system at the storage ring DCI. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v.152, p.173-177.
  19. Liebscher, A., Dorsam, G., Franz, G., Wunder, B. and Gottschalk, M. (2010) Crystal chemistry of synthetic lawsonite solid-solution series $CaAl_2$ [$(OH)_2/Si_2O_7$] ${\cdot}$ $H_2O$-$SrAl_2$[$(OH)_2$/$Si2O_7$]${\cdot}$ $H_2O$ and the Cmcm-$P2_1$/m phase transition. American Mineralogist, v.95, p.724-735. https://doi.org/10.2138/am.2010.3220
  20. Martin, L.A.J., Hermann, J., Gauthiez-Putallaz, L., Whitney, D.L., Vitale Brovarone, A., Fornash, K.F. and Evans N.J. (2014) Lawsonite geochemistry and stability- implication for trace element and water cycles in subduction zones. Journal of Metamorphic Geology, v.32, p.455-478. https://doi.org/10.1111/jmg.12093
  21. Millar, D.I.A. (2012) Energetic Materials at Extreme Conditions. Springer Theses, p.31.
  22. Merrill, L. and Bassett, W.A. (1974) Miniature diamond anvil pressure cell for single-crystal X-ray diffraction studies. Review of Scientific Instruments, v.45, p.290-294. https://doi.org/10.1063/1.1686607
  23. Okamoto, K. and Maruyama, S. (1999) The high-pressure synthesis of lawsonite in the MORB+$H_2O$ system. American Mineralogist, v.84, p.362-373. https://doi.org/10.2138/am-1999-0320
  24. Pawley, A.R. and Holloway, J.R. (1993) Water sources for subduction zone volcanism: new experimental constraints. Science, v.260, p.664-667. https://doi.org/10.1126/science.260.5108.664
  25. Pawley, A.R. (1994) The pressure and temperature stability limits of lawsonite - implications for $H_2O$ recycling in subduction zones. Contributions to Mineralogy and Petrology, v.118, p.99-108. https://doi.org/10.1007/BF00310614
  26. Pawley, A.R. and Allan, D.R. (2001) A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineralogical Magazine, v.65(1), p.41-58. https://doi.org/10.1180/002646101550118
  27. Schmidt, M.W. and Poli, S. (1994) The stability of lawsonite and zoisite at high-pressure: experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere. Earth and Planetary Science Letters, v.124, p.105-118. https://doi.org/10.1016/0012-821X(94)00080-8
  28. Schmidt, M.W. and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, v.163, p.361-379. https://doi.org/10.1016/S0012-821X(98)00142-3
  29. Smith, G.C. (1991) X-ray imaging with gas proportional detectors. Synchrotron Radiation News, v.4, p.24-30.
  30. Spandler, C., Hermann, J., Arculus, R. and Mavrogenes, J. (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology, v.146, p.205-222. https://doi.org/10.1007/s00410-003-0495-5
  31. Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Appllied Crystallography, v.34, p.210-213. https://doi.org/10.1107/S0021889801002242
  32. Tribuzio, R., Messiga, B., Vannucci, R. and Bottazzi, P. (1996) Rare earth element redistribution during highpressure-low-temperature in ophiolitic Fe-gabbros (Liguria, northwestern Italy): implications for light REE mobility in subduction zones. Geology, v.24, p.711-714. https://doi.org/10.1130/0091-7613(1996)024<0711:REERDH>2.3.CO;2
  33. Zack, T., Foley, S.F. and Rivers, T. (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). Journal of Petrology, v.43, p.1947-1974. https://doi.org/10.1093/petrology/43.10.1947

Cited by

  1. The high-pressure phase of lawsonite: A single crystal study of a key mantle hydrous phase vol.122, pp.8, 2017, https://doi.org/10.1002/2017JB014344