• Title/Summary/Keyword: Diamond film

Search Result 447, Processing Time 0.026 seconds

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Pulsed Magnetron Sputtering Deposit ion of DLC Films Part I : Low-Voltage Bias-Assisted Deposition

  • Oskomov, Konstantin V.;Chun, Hui-Gon;You, Yong-Zoo;Lee, Jing-Hyuk;Kim, Kwang-Bok;Cho, Tong-Yul;Sochogov, Nikolay S.;Zakharov, Alexender N.
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Pulsed magnetron sputtering of graphite target was employed for deposition of diamond-like carbon (DLC) films. Time-resolved probe measurements of magnetron discharge plasma have been performed. It was shown that the pulsed magnetron discharge plasma density ($∼10^{17}$ $m^{-3}$ ) is close to that of vacuum arc cathode sputtering of graphite. Raman spectroscopy was sed to examine DLC films produced at low ( $U_{sub}$ / < 1 kV) pulsed bias voltages applied to the substrate. It has been shown that maximum content of diamond-like carbon in the coating (50-60%) is achieved at energy per deposited carbon atom of $E_{c}$ =100 eV. In spite of rather high percentage of $sp^3$-bonded carbon atoms and good scratch-resistance, the films showed poor adhesion because of absence of ion mixing between the film and the substrates. Electric breakdowns occurring during the deposition of the insulating DLC film also thought to decrease its adhesion.

Properties of a free-standing diamond wafer deposited by the multi-cathode direct current plasma assisted CVD method (다음극 직류전원플라즈마 화학 증착법에 의해 합성된 자유막 다이아몬드 웨이퍼의 특성)

  • 이재갑;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.356-360
    • /
    • 2001
  • Properties of a free-standing diamond wafer with a diameter of 80 mm and a thickness of 900~950 $mu extrm{m}$ deposited by the multi-cathode direct current plasma assisted chemical vapor deposition (MCDC PACVD) method were investigated. Defects of the diamond film were observed by optical transmission microscopy and its crystallinity was characterized by Raman and IR spectroscopy. Defects were distributed partially on boundaries of the grain. In the grain, (111) plane contained a higher defect density than that on (100) plane. FWHM of Raman diamond peak and IR transmission at 10.6 $\mu\textrm{m}$ were 4.6 $\textrm{cm}^{-1}$ /~5.3 $\textrm{cm}^{-1}$ and 51.7 ~ 61.9 %, and their uniformity was $\pm$7% and $\pm$9%, respectively. The diamond quality decreased with going from center to edge of the wafer.

  • PDF

Property Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리에 따른 Diamond-like Carbon (DLC) 박막의 특성변화)

  • Park, Ch.S.;Koo, K.H.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Diamond-like carbon (DLC) films is a metastable form of amorphous carbon containing a significant fraction of Sp3 bond. DLC films have been characterized by a range of attractive mechanical, chemical, tribological, as well as optical and electrical properties. In this study DLC films were prepared by the RF magnetron sputter system on $SiO_2$ substrates using graphite target. The effects of the post annealing temperature on the Property variation of the DLC films were examined. The DLC films were annealed at temperatures ranging from 300 to $500^{\circ}C$ using rapid thermal process equipment in vacuum. The variation of electrical property and surface morphology as a function of annealing treatment was investigated by using a Hall Effect measurement and atomic force microscopy. Raman and X-ray photoelectron spectroscopy analyses revealed a structural change in the DLC films.

A Study on XPS and XRR Characteristics of DLC films Deposited by FCVA Method (FCVA 방법으로 증착된 다이아몬드상 탄소 박막의 XPS 및 XRR 특성 연구)

  • 박창균;장석모;엄현석;서수형;박진석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.109-115
    • /
    • 2003
  • Diamond-like carbon (DLC) films are deposited at room temperature using a filtered cathodic vacuum arc (FCVA) technique. The influence of negative bias voltage (applied to the substrate from 0 to -250V) on the $sp^3$ hybridized carbon fraction is examined by Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) for C 1s core peak. For the first time, depth profile of C 1s, Si 2p, and O 1s XPS peaks for the deposited DLC film are obtained. DLC film is modeled as a multilayered structure. composing of surface, bulk, and interface. In addition, the x-ray reflectivity (XRR) is proposed as a method for estimating the density, surface roughness, and thickness of each layer constituting the DLC film. The estimated thickness of DLC film is in good agreement with the result obtained from the transmission electron microscope (TEM) measurement.

EO Performances of the Ion Beam Aligned TN-LCD on a Diamond-like-Carbon Thin Film Surface

  • Hwang, Jeoung-Yeon;Jo, Yong-Min;Seo, Dae-Shik;Rho, Soon-Joon;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.497-499
    • /
    • 2003
  • Electro-optical (EO) performances of the ion beam aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the DLC thin film surface were studied. An excellent voltage-transmittance (VT) curve of the ion beam aligned TN-LCD was observed with oblique ion beam exposure on the DLC thin film surface for 1 min. Also, a faster response time for the ion beam aligned TN-LCD can be achieved with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved.

  • PDF

An a-D film for flat panel displays prepared by FAD

  • Liu, Xianghuai;Mao, Dongsheng
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.7-14
    • /
    • 1998
  • Details are given of an study of the characteristics of field-induced electron emission from hydrogen-free high $sp^3$ content(>90%) amorphous diamond (a-D) film deposited on heavily doped ($\rho$<0.01 $\Omega\cdot\textrm{cm}$) n-type monocrystalline Si(111) substrate. It is demonstrated that a-D film has excellent electron field emission properties. Emission current can reach 0.9 $\mu$A at applied field as low as 1 V/$\mu\textrm{m}$, and emission current density can be obtained about several mA/$\textrm{cm}^2$. The emission current is stable when the beginning current is at 50 $\mu$A within 72 hours. Uniform fluorescence display of electron emission from whole face of the a-D film under the electric field of 10~20 V/$\mu\textrm{m}$ was also observed. It can be considered that the contribution of excellent electron emission property results from its smooth, uniform, amorphous surface and high $sp^3$ content of the a-D films.

  • PDF

A Study on the Anti-Stiction Coating of Glass Lens Mold for Optical Communication (광통신용 글라스렌즈 성형 금형의 이형성 코팅에 관한 연구)

  • Jeong, Woon-Jo;Cho, Jae-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.962-967
    • /
    • 2017
  • The Diamond-Like-Carbon (DLC) coating is a new carbon-based amorphous material. Carbon ions in the plasma are electrically accelerated and collide with the substrate to form a thin film. This film has similar properties to diamonds such as high surface hardness, low coefficient of friction, corrosion resistance and durability that do not react with acids and bases. Also, since there is no thermal deformation, it can be printed at room temperature. and coated on almost all materials such as paper, polymer, ceramics and various metals even aspheric lens it is possible to mirror surface coating with excellent surface roughness. In this paper, we have analyzed the DLC film formed by Filtered Arc Ion Plating (Filtered AIP) process.

THE STUDY ON THE REMOVAL TORQUE OF THE DIAMOND LIKE CARBON COATED TITANIUM ABUTMENT SCREWS (DLC 표면 처리에 따른 임플랜트 지대주 나사의 풀림 현상에 관한 연구)

  • Koak Jai-Young;Heo Seong-Joo;Chang Ik-Tae;Yim Soon-Ho;Lee Jong-Yeop;Lee Kwang-Ryeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.128-135
    • /
    • 2003
  • Statement of problem : Implant screw loosening remains a problem in implant prosthodontics. Some abutment screws with treated surfaces were introduced to prevent screw loosening and to increase preload. DLC(Diamond Like Carbon) film has similar properties on hardness, wear resistance, chemical stability, biocompatibility as real diamond materials. Purpose : The purpose of this study was to investigate the effect of lubricant layer on abutment screw and to discriminate more effective method between soft lubricant and hard lubricant to prevent screw loosening. Material and method : In this study, $1{\mu}m$ thickness DLC was used as protective, lubricating layer of titanium screws and 3 times removal torque was measured on the abutment screws to investigate the difference in 10 coated and 10 non-coated abutment screws. Results : The results indicated that the implants with DLC coating group were not more resistant to the applied force in screw loosening. At 32Ncm, the 3 times removal torque in DLC group were $27.75{\pm}2.89,\;25.85{\pm}2.35$ and $26.2{\pm}2.57$. The removal torque in no-coated abutment screws were $27.85{\pm}4.23,\;27.35{\pm}2.81$ and $27.9{\pm}2.31$, respectively. Conclusion : The lubricant layer used in this study was Diamond Like Carbon(DLC) and it have a properties of hard and stable layer. The DLC coating layer was hard enough to prevent distortion of screws in the repeated unscrewing procedure in clinical situation. The reduced friction coefficient in hard DLC layer was not effective to prevent screw loosening.

Study on Adhesion of DLC Films with Interlayer (중간층을 이용한 DLC 박막의 밀착력에 관한 연구)

  • Kim, Gang-Sam;Cho, Yong-Ki
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.3
    • /
    • pp.127-131
    • /
    • 2010
  • Adhesion of DLC film is very significant property that exhibits wear resistance, chemical inertness and high hardness when being deposited to metal substrate. This study was considered that change adhesion of DLC film produced by Plasma Enhanced Chemical Vapor Deposition can be presented through inserting interlayer (Cr, Si-C:H). The thickness of interlayer was result of changing adhesion and residual stress. It was showed that the maximum 12 N of adhesion is on DLC film of Cr interlayer, and that a tendency is to be increased residual stress depend on the thickness. DLC film of Si-C:H interlayer represented 16 N of adhesion at $1{\mu}m$, whereas adhesion is decreased when the thickness is increased. For the interlayer at multi-layer, it was the best that adhesion of Cr/Si-C:H/DLC film was 33 N. Si-C:H interlayer at DLC film controled adhesion of the whole film. It was relaxed the internal stress of DLC film produced by inserting Cr, Si-C:H interlayer.