DOI QR코드

DOI QR Code

Study on Adhesion of DLC Films with Interlayer

중간층을 이용한 DLC 박막의 밀착력에 관한 연구

  • Kim, Gang-Sam (Surface Technology and Heat Treatment R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Cho, Yong-Ki (Surface Technology and Heat Treatment R&D Department, Korea Institute of Industrial Technology (KITECH))
  • Received : 2010.04.22
  • Accepted : 2010.06.29
  • Published : 2010.06.30

Abstract

Adhesion of DLC film is very significant property that exhibits wear resistance, chemical inertness and high hardness when being deposited to metal substrate. This study was considered that change adhesion of DLC film produced by Plasma Enhanced Chemical Vapor Deposition can be presented through inserting interlayer (Cr, Si-C:H). The thickness of interlayer was result of changing adhesion and residual stress. It was showed that the maximum 12 N of adhesion is on DLC film of Cr interlayer, and that a tendency is to be increased residual stress depend on the thickness. DLC film of Si-C:H interlayer represented 16 N of adhesion at $1{\mu}m$, whereas adhesion is decreased when the thickness is increased. For the interlayer at multi-layer, it was the best that adhesion of Cr/Si-C:H/DLC film was 33 N. Si-C:H interlayer at DLC film controled adhesion of the whole film. It was relaxed the internal stress of DLC film produced by inserting Cr, Si-C:H interlayer.

Keywords

References

  1. A. Matthews, S. S. Eskildsen, Diam. Relat. Mater., 3 (1994) 902. https://doi.org/10.1016/0925-9635(94)90297-6
  2. H. Dimigen, H. Hubsch, Philips Tech. Rev., 41(6) (1984) 186.
  3. A. Grill, Surf. Coat. Technol., 94-95 (1997) 507.
  4. K. Taube, M. Grischke, K. Bewilogua, Surf. Coat. Technol., 68/69 (1994) 662. https://doi.org/10.1016/0257-8972(94)90234-8
  5. M. Morgan, Thin Solid Films, 7 (1971) 313. https://doi.org/10.1016/0040-6090(71)90049-6
  6. C. Weissmantel, J. Vac. Sci. Technol., 18 (1981) 179. https://doi.org/10.1116/1.570719
  7. G. Fedosenko, A. Schwabedissen, J. Engemann, E. Braca, L. Valentini, J. M. Kenny, Diam. Relat. Mater., 11 (2002) 1047. https://doi.org/10.1016/S0925-9635(01)00612-4
  8. T. Michler, M. Grischke, I. Traus, K. Bewilogua, H. Dimigen, Diam. Relat. Mater., 7 (1998) 459. https://doi.org/10.1016/S0925-9635(97)00236-7
  9. K. Oguri, T. Arai, J. Mater. Res., 5(11) (1990) 2567. https://doi.org/10.1557/JMR.1990.2567
  10. K. Oguri, T. Arai, Surf. Coat. Technol., 47 (1991) 710. https://doi.org/10.1016/0257-8972(91)90344-V
  11. K. Oguri, T. Arai, J. Mater. Res., 7(6) (1992) 1313. https://doi.org/10.1557/JMR.1992.1313
  12. H. Dimigen, H. Hubsch, Philips Tech. Rev., 41(6) (1984) 186.
  13. H. Mori, H. Tachikawa, Surf. Coat. Technol., 149 (2002) 225.
  14. Y. Liu, A. Erdemir, E. I. Meletis, Surf. Coat. Technol., 82 (1996) 76.
  15. J. G. Deng, M. Braun, Diam. Relat. Mater., 4 (1995) 936. https://doi.org/10.1016/0925-9635(94)00256-8
  16. X. He, W. Li, H. Li, J. Vac. Sci. Technol., 14(4) (1996) 2039. https://doi.org/10.1116/1.580079
  17. W.-C. Gu, S.-H. Kim, S.-R. Lee, J. of the Korean Inst. of Met. & Mater., 30 (1992) 1438.
  18. V. Singh, J. C. Jiang, E. I. Meletis, Thin Solid Films, 489 (2005) 150. https://doi.org/10.1016/j.tsf.2005.04.104
  19. P.-C. Tsai, Y.-F. Hwang, J.-Y. Chiang, W.-J. Chen, Surf. Coat. Technol., 202 (2008) 5350. https://doi.org/10.1016/j.surfcoat.2008.06.073
  20. J. F. Zhao, P. Lemoine, Z. H. Liu, J. P. Quinn, P. Maguire, J. A. McLaughlin, Diam. Relat. Mater., 10 (2001) 1070. https://doi.org/10.1016/S0925-9635(00)00544-6

Cited by

  1. A Study on the Mechanical Property of Sillicon Diamond-like-carbon Coating for Insulation of Electrically Assisted Forming Die Component vol.23, pp.6, 2015, https://doi.org/10.7467/KSAE.2015.23.6.656