Properties of a free-standing diamond wafer deposited by the multi-cathode direct current plasma assisted CVD method

다음극 직류전원플라즈마 화학 증착법에 의해 합성된 자유막 다이아몬드 웨이퍼의 특성

  • 이재갑 (한국과학기술연구원 박막기술연구센터) ;
  • 박종완 (한양대학교 재료공학과)
  • Published : 2001.10.01

Abstract

Properties of a free-standing diamond wafer with a diameter of 80 mm and a thickness of 900~950 $mu extrm{m}$ deposited by the multi-cathode direct current plasma assisted chemical vapor deposition (MCDC PACVD) method were investigated. Defects of the diamond film were observed by optical transmission microscopy and its crystallinity was characterized by Raman and IR spectroscopy. Defects were distributed partially on boundaries of the grain. In the grain, (111) plane contained a higher defect density than that on (100) plane. FWHM of Raman diamond peak and IR transmission at 10.6 $\mu\textrm{m}$ were 4.6 $\textrm{cm}^{-1}$ /~5.3 $\textrm{cm}^{-1}$ and 51.7 ~ 61.9 %, and their uniformity was $\pm$7% and $\pm$9%, respectively. The diamond quality decreased with going from center to edge of the wafer.

다음극 DC PACVD법에서 합성된 직경 80 mm, 두께 900 $\mu\textrm{m}$ ~ 950 $\mu\textrm{m}$의 자유막 다이아몬드웨이퍼의 특성을 분석하였다. 광투과현미경으로 결함의 분포를 관찰하고, Raman 및 IR 장치로 결정성을 분석하였다. 결함은 결정입계 부위에서 많이 관찰되었다. 또한 하나의 결정립에서 (111)면이 (100)면에 비해 상대적으로 많은 결함을 함유하였다. Raman 다이아몬드 peak의 FWHM 및 10.6 $\mu\textrm{m}$ 파장에서의 IR 투과도는 각각 4.6 $\textrm{cm}^{-1}$ /~5.3 $\textrm{cm}^{-1}$및 51.7% ~ 61.9%로, 두 값의 웨이퍼 내에서 균일성은 $\pm$7% 및 $\pm$9%이었다. 다이아몬드 웨이퍼의 결정성은 가운데에서 가장자리로 갈수록 저하되었다.

Keywords

References

  1. J. Mater. Sci. v.17 Matsumoto;Y. Sato;M. Tsutsumi;N. Setaka
  2. Diamond and Related Materials v.8 H. Windischmann;K. J. Gray
  3. Diamond and Related Materials v.9 S. E. Coe;R. S. Sussmann
  4. J. Mater. Res. v.4 Setaka, N.
  5. 한국요업학회지 v.3 no.1 Jae-Kap Lee;Wook-seong Lee;Young-Joon Baik;Kwang Yong Eun
  6. J. of Material Research v.13 no.4 Yong-Joon Baik;Jae-Kap Lee;Wook-seong Lee;Kwang Yong Eun
  7. Thin Solid Films v.341 Yong-Joon Baik;Jae-Kap Lee;Wook-seong Lee;Kwang Yong Eun
  8. J. Mater. Res. v.15 no.1 Jae-Kap Lee;Young-Joon Park;Kwang Yong Eun;Young-Joon Baik;Jong-Wan Park
  9. Diamond and Related Materials v.9 Jae-Kap Lee;Hee-Baik Choi;Kwang Yong Eun;Young-Joon Baik
  10. Diamond and Related Materials v.10 Jae-Kap Lee;Young-Joon Baik;Kwang Yong Eun;Jong-Wan Park
  11. J. Mater. Res. v.4 no.2 D. S. Knight;W. B. White
  12. Proc. 2nd Intl. Conf. on New Diamond and Technology A. R. Badzian;T. Badzian;Wang, X. H.;T. M. Hartnett
  13. Proc. 2nd Intl. Conf. on the Application of Diamond Films and Related Materials Y.-J. Baik;K. Y. Eun;A. Badzian
  14. Phys. Rev. v.97 Lax;M.;Burstein
  15. Chemistry and Physics of Carbon v.13 Davis, G.
  16. Thin Solid Films v.146 Couderc, P.;Catherine
  17. Daimond and Related Materials v.7 C. P. Schaffer;I. C. Chen;R. L. Stursivant;A. T. Hunter;R. G. Wilson
  18. Diamond and Related Materials v.3 M. Griesser;G. Stingeder;M. Grasserbauer;H. Baumann;F. Link'P. Wurzinger;H. Lux;R. Haubner;B. Lux
  19. Diamond and Related Materials v.8 P. M. Menon;A. Edwards;C. S. Feigerle;R. W. Shaw;D. W. Coffey;L. Heatherly;R. E. Clausing;L. Robindon;D. C. Glasgow