• Title/Summary/Keyword: Diagonal type

Search Result 170, Processing Time 0.032 seconds

NERON SYMBOL ON ${\kappa}-HOLOMORPHIC$ TORUS

  • Sim, Kyung-Ah;Woo, Sung-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.843-854
    • /
    • 2000
  • S. Turner has shown that a Neron symbol can be calculated from the values of K-meromorphic theta functions corresponding to divisors on K-holomorphic torus of strongly diagonal type. Using an isogeny to a K-holomorphic torus of strongly diagonal type, he constructed a Neron symbol on K-holomorphic torus of diagonal type. In this work, we provide a simple formula of the Neron symbol on the Tate curve. And then we construct the Neron symbol on K-holomorphic torus of diagonal or st rongly diagonal type without using isogenies.

  • PDF

DIAGONAL LIFTS OF TENSOR FIELDS OF TYPE (1,1) ON CROSS-SECTIONS IN TENSOR BUNDLES AND ITS APPLICATIONS

  • Gezer, Aydin;Salimov, Arif
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.367-376
    • /
    • 2008
  • The main purpose of this paper is to investigate diagonal lift of tensor fields of type (1,1) from manifold to its tensor bundle of type (p, q) and to prove that when a manifold $M_n$ admits a $K\ddot{a}hlerian$ structure ($\varphi$,g), its tensor bundle of type (p,q) admits an complex structure.

Design and Experimental Studies of Radial-Outflow Type Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • In order to apply the design method of diagonal flow fan based on axial flow design to the design of radial-outflow type diagonal flow fan which has lower specific speed of 600-700 [$min^{-1}$, $m^3/min$, m], radial-outflow type diagonal flow fan which specific speed was 670 [$min^{-1}$, $m^3/min$, m] was designed by a quasi three-dimensional design method. Experimental investigations were conducted by fan characteristics test, flow surveys by a five-hole probe and a hot wire probe. Fan characteristics test agreed well with the design values. In the flow survey at rotor outlet, the characteristic region was observed. Two flow phenomena are considered as the cause of the characteristic region, one is tip leakage vortex near rotor tip and another is pressure surface separation on the rotor blade.

Internal Flow Analyses of Diagonal Type Blowers Using a Quasi-3-Dimensional Method Considering Spanwise Mixing and Tip Clearance Effect Due to Secondary Flows (이차흐름에 의한 스팬방향의 믹싱효과와 선단틈새흐름을 고려한 준 삼차원 사류송풍기 내부흐름 해석)

  • Kim, Chan-Kyu;Jun, Yong-Du;Kim, Tae-Whan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.137-146
    • /
    • 2002
  • This paper presents a quasi-3-dimensional calculation method considering secondary flows in the impellers of diagonal flow blowers. A Quantitative estimation of the secondary flow effects is made by using secondary flow theories. In order to verify the validity of the adopted models, that is, span-wise mixing model and the tip clearance model, numerical simulations are performed for two different types of impellers of diagonal flow blowers which are designed differently. Numerical experiments are conducted for each of a constant tangential velocity type impeller, and a free vortex type impeller, both at two different flow coefficients. According to the simulation results, it was found that the present model considering span-wise mixing and tip clearance effect shows better agreements with the experimental data than those without these models in terms of the flow velocity and the angle distribution.

  • PDF

Numerical Calculations and Analyses in Diagonal Type Magnetohydrodynamic Generator

  • Le, Chi Kien
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1365-1370
    • /
    • 2013
  • This paper examines the effects of magnetic induction attenuation on current distribution in the exit regions of the Faraday-type, non-equilibrium plasma Magnetohydrodynamic (MHD) generator by numerical calculation using cesium-seeded helium. Calculations show that reasonable magnetic induction attenuation creates a very uniform current distribution near the exit region of generator channel. Furthermore, it was determined that the current distribution in the middle part of generator is negligible, and the output electrodes can be used without large ballast resistors. In addition, the inside resistance of the exit region and the current concentration at the exit electrode edges, both decrease with the attenuation of magnetic flux density. The author illustrates that the exit electrodes of the diagonal Faraday-type, non-equilibrium plasma MHD generator should be arranged in the attenuation region of the magnetic induction, in order to improve the electrical parameters of the generator.

Simulation on Heterogeneous Deformation Behavior of AA1100 During Multi-axial Diagonal Forging Using Finite Element Analysis (유한요소해석을 이용한 다축대각단조 시 AA1100합금의 불균일 변형 거동에 관한 모사)

  • Kim, M.S.;Lee, S.E.;Lee, S.;Jeong, H.T.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.98-104
    • /
    • 2019
  • The present study numerically simulates the deformation heterogeneity developed in AA1100 during multi-axial diagonal forging (MADF) using finite element analysis (FEA). Diagonal forging type consisting of diagonal forging (DF) and return-diagonal forging (R-DF) proved to be relatively beneficial compared to plane forging type which includes plane forging (PF) and return-plane forging (R-PF) for minimizing the non-uniformity of deformation developed in workpieces. Simulation of the effective strain generated in workpieces during the two types of forging was done using 3-D FEA. FEA shows the effect of friction coefficient on the deformation behavior on workpieces. The simulation of 2 types forging with different friction coefficients revealed that the magnitude of barreling effect and strain heterogeneity in workpieces increases with an increase in the friction coefficient.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

Algorithmic Properties of Isotone Complementarity Problems

  • Ahn, Byong-Hun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 1987
  • This paper discusses algorithmic properties of a class of complementarity programs involving strictly diagonally isotone and off-diagonally isotone functions, i. e., functions whose Jacobian matrices have positive diagonal elements and nonnegative off-diagonal elements, A typical traffic equilibrium under elastic demands is cast into this class. Algorithmic properties of these complementarity problems, when a Jacobi-type iteration is applied, are investigated. It is shown that with a properly chosen starting point the generated sequence are decomposed into two converging monotonic subsequences. This and related will be useful in developing solution procedures for this class of complementarity problems.

  • PDF

INCOMPLETENESS OF SPACE-TIME SUBMANIFOLD

  • Kim, Jong-Chul
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.581-592
    • /
    • 1999
  • Let M be a properly immersed timelike hypersurface of $\overline{M}$. If M is a diagonal type, M satisfies the generic condition under the certain conditions of the eigenvalues of the shape operator. Moreover, applying them to Raychaudhuri equation, we can show that M satisfies the generic condition. Thus, by these results, we establish the singularity theorem for M in $\overline{M}$.

  • PDF

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF