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INCOMPLETENESS OF SPACE-TIME SUBMANIFOLD

JONG-CHuL KM

ABSTRACT. Let M be a properly immersed timelike hypersurface
of M. If M is a diagonal type, M satisfies the generic condition un-
der the certain conditions of the eigenvalues of the shape operator.
Moreover, applying them to Raychaudhuri equation, we can show
that M satisfies the generic condition. Thus, by these results, we
establish the singularity theorem for M in M.

1. Preliminaries

Let M be an (n + 1)-dimensional Lorentzian manifold with the sig-
nature (—,+, -+ ,+), and M be a properly immersed hypersurface of
M which means that the pull back metric tensor is Lorentzian. The
immersion is actually assumed as an isometric immersion. We shall
identify local vector fields on M with local vector fields on M by the
suitable extension process, and use the same notations for them. Thus,
we may use the metric tensor (, ) on M and M as the same notation.

In this paper, we assumed that the M has a non-vanishing second
fundamental form Sy and a continuous spacelike unit normal vector
field N on M. If X and Y are the local vector fields on M and their
local extensions to M, the connection V on M is defined by

VXY' = (_V—XY)T)

where V is the connection defined by on M and T indicates the pro-
jection to the tangent part of M. We know that this connection V on
M is a well defined connection relative to the tensor induced on M via
the pull back metric tensor.
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The second fundamental form By is represented as
BN(X,Y) = (VxY,N)
and the shape operator Sy is defined by
BN(X,Y) = (SN(X),Y) for X,Y € T, M,

where T,M is a tangent space at p in M. This satisfies Sy(X) =
—(VxN)T as well as (Sn(X),Y) = (X,Sn(Y)), that is, Sy is self-
adjoint linear operator on T, M.

It is well-known property that, in the case of Riemann manifolds,
there exists an orthonormal basis of T, M at each point p in M such that
this basis consists of eigenvectors for the shape operator Sy. However,
in the case of Lorentzian manifolds, it is, in general, not true [2]. That
is, eigenvectors of Sy need not span T, M [10]. A point in M at which
the (real) eigenvectors of Sy span T, M will be called a diagonal point.

At such a point, there is an orthonormal basis ey, e,... e, of TpM
with e; a unit future-directed timelike vector and Sn(e;) = kie; for
each i = 1,...,n. Thus, es,es3,...,e, are spacelike [2]. We will also

assume that the sets of the form M N {p € M| the first component of
p on a neighborhood of p is constant } are Cauchy surfaces for M. We
will also consider that the connections are torsion free, and, by these
connections, we have the relations between the curvatures R and R of
M and M respectively in terms of the shape operator as follows:

R(X,Y)Z = R(X,Y)Z + [(Sn(Y), Z)Sn X — (Sn(X), Z)SNY]

for the tangent vector fields X,Y,Z on M and their local extensions
to M [11].

2. The main results

Let K and K be the sectional curvature on M and M respectively,
o the plane section of T, M with the basis X,Y in T, M, and

Qo) = (X, X){Y,Y) — (X, V)%
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Then, using the self-adjoint shape operator Sy,

K(O’)

=5 ( )(R(X Y)Y, X) |

- 56 ){<R<X Y)Y+ [(Sn(Y), Y)Sn(X) — (Sw(X), Y)Sn (V)] X)}
~R(0) + -Cyéa{<sN<Y), Y)(Sn(X), X) = (Sn(X), Y)?}.

If {e;} is an orthonormal vectors comsisting of eigenvectors for Sy
in T,M and {k;} is the corresponding eigenvalues, then letting e; be a
future-directed timelike vector,

= 1
K(04;) = K(0i5) + Qo (Wkieisea)(segre5)}
= K(0i;) + kik;,
where 0;; is a plane section with the basis e; and e; with i # j.
Thus we have the following Lemma.

LEMMA 1. The difference of K(0;;) and K(0;;) at p in M is positive
if and only if the eigenvalues of Sy are all negative or all positive.

At a diagonal point p, take an orthonormal basis {e;} of T,M con-
sisting of eigenvectors for Sy with a future-directed timelike unit vector
e1, and let Sy(e;) = kie;. Thus for X in T, M, letting X = ¥ x;e;,

Bn(X,X) = (Sn(X),X) = <5N (Zx,ez),ixje»
i=1 j=1

= sz <SN(61'),Z$j6j>
= Zml <k: e,,}:w]ej>

=1
n
= Z ki:vi2(ei, e,—) = —klx% + Z kzxf
i=1 =2

Thus we have the following Lemma.
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LEMMA 2. If By(X, X) is positive for all nonzero vector X in T,M
at a diagonal point p if and only if ky is negative and k; 's (¢ > 2) are
positive. This implies that K (o) > K(0p).

Let X be a vector at pin M and X%, X, contravariant and covariant

components respectively. In general, the generic condition for X is
defined by

n
)" XPX; X(aRejijieXa) # O-
] i,5=1
Let ~ be a unit speed timelike geodesic curve and v'(9) = X. Let
V4 (v(to)) be the set of vectors orthogonal to X, that is,

V4 (1(to)) = {¥ € TysyMIY; X) = 0}.

Then, we know that the curvature tensor R induces a linear map
from VL (v(t)) to itself:

R(, X)X : V1 (x(to)) = V*(x(to))-

The generic condition can be interpreted by this map. A timelike
curve + satisfies the generic condition means that there exists a point tp
in the domain of 7 such that v/ (¢o) satisfies the generic condition, which
is equivalent to the nontriviality of the linear map R( ,7'(t0))7'(to) [1]-

Now, we will consider the generic condition on a timelike hypersur-
face M of M. Let v be a unit speed timelike curve on M, and suppose
that v has a point to in a domain of v such that ¥'(to) = €1 is an
eigenvector for Sy and the corresponding eigenvalue is k;. For any
vector Xg in V+(v(to)), the following holds:

R(Xp,e1)e1

= R(Xo,e1)e1 + {(Sn(e1), e1)Sn(Xo) — (Sn(Xo),e1)Sn(e1)}
= R(Xo,e1)e1 + {(k1e1,e1)Sn(Xo) — (Xo,kre1)krer}
= R(Xo,e1)er — k1Sn(Xo)-

Thus, we have the following result.
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THEOREM 3. If a unit timelike curve ¥ on M has a-point tg in the
domain ofy such that v'(to) is an eigenvector for Sy, and there exists a
non-zero vector Xo in VL (v(tp)) such that the vector Sy(Xo) and the
vector R(Xo,7 (to))Y'(to) are independent, then ~ satisfies the generic
condition.

We recall that, if M has the constant curvature C, then R(X,Y)Z =

C{{(X,2)X — (X,Z)Y}. Suppose that a point p in M is a diagonal
point. Let us compute the Ricci curvature ch(X X). If X is a timelike

vector in T,M, X = Z z;e; for the orthonormal basis {e,} as before,
i=1

(eie;) = €; and ks are the eigenvalues of Sy correspondmg to the

eigenvector e;, then

Rie(X,X) = Z(e,,e, R(e,,X)X €;)
i=1

(ez,e,)(R(e,,X)e“X)

II
M:

.
it
-

= Z e:(R(ei, X)e; + (Sn(X), e:)Sn(es)

i=1
- (SN(B,;), ei)SN(X))X>
= =S e (C((X, ei)es — (ei,e)X) + (Sn(X),e5) Sn(es)
i=1

— (Sn(e:), e:)Sn(X), X)

= -—Zez{C( X, e;)? —ez(X X))+ (X, kzeo
i=1

— (kies, €:) (Sn(X), X)}

= Cln~1)(X, X) + 3~ k(Sn(X), X) - (Sw(X), S (X)).
=1

Suppose that max{|ks|, |ks],.. ]knj} = Ikll Let X = sze, in

=1
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T,M. Since Z k; = H, letting H = 0,

i=1
Ric(X, X) = C(n— 1)(X, X) + H(Sn(X), X) — (—k}z? + - + kXa})
Z C(n - 1)(X’X) - k%<X1X)

Thus, we have the following result by Proposition 2.8 1]
THEOREM 4. Ifp is a diagonal point in M, H = 0, and M has con-

k
stant curvature C which is less than or equal to - 1 1 then Ric(X, X)

> 0 for the timelike vector X in T,M. Moreover, if the curvature is
2

k
less than -—1—1, then X satisfies the generic condition.

Now, if p is a diagonal point in M, we have the Ricci curvature for
a timelike vector X in T, M as follows:

Ric(X, X)

= C(n— (X, X) + > _k:(Sn(X),X) — (Sn(X), Sn(X))
i=1
= Cn —1){X,X) —ky(ka + - - + kn)2} + k(b1 + ks + -+ + kn) T3
oot k(b + ko + -+ En1)2?
={-C(n—-1)—ky(k2+---+ kn)}z?
+{Cn—1) + ka(ky + k3 + - + kn)}z3
4ot {C(n=1) + kn(k1 + -+ + kn—1)}T2.
If ming<icn{ki(ki + ko + -+ kic1 + kiv1 + - + kn)}
=ki(kg+ - +kn) =a,
then
Ric(X,X) > {C(n—1)+ a}(—22 + i+ + z?)
={C(n-1)+a},(X,X).

Thus, we have the following result by Proposition 2.8 [1].
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THEOREM 5. Let p be a diagonal point in M and M has constant
curvature C. If C < — then Ric(X,X) > 0 for a timelike vector

a

n-1’ .

X in T,M. Moreover, if C' < T then X satisfies the generic
n —

condition. :

In the case that M has arbitrary curvature and p is a diagonal point
in M, the Ricci curvature of M for a timelike vector X in TpM can be

n
represented as follows; for X = Z Ti€s,

Ric(X, X)
= Ric(X, X) — Z (X, Sn(es))?
+ Y €(Sn(e), e)(Sn(X), X)
=1

n

= —RZ'C(X,X) - Z €i<X, kiei)2 -+ iéi(k}iei, 6,’> (SN(X),X>

i=1 i=1

= Ric(X,X) - > eki(X,e)? + > Fhi(Sn(X), X)
=1 i=1

= Ric(X,X) - > ekZ(X,e)? + > ki(Sn(X), X)
i=1 i=1

= Ric(X,X) — (—k3z? + K3z + --- + k222) + Z Ek:i(Sn(X), X)
=1

= Ric(X,X) — kylka + ks + -+ - + kn)x? + ka(k1 + k3 + -+ - + k)3
+ha(ks +ka+ ka4 +ka)zi+
+ kn(ky + kg + -+ kpo1)22.

If K(o;5) — F(aij) > b, then, by Lemma 1, we have

Ric(X,X) > R(X,X) — ka(kz + k3 + -+ + kn)a3.
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Let ko be the maximum of {kiks, k1ks, ... ,k1kn}. This implies

Ric(X,X) > R(X, X) — kox?3
= R(X, X) — ko(X, e1)*.

Thus, we have the following result by Proposition 2.8 {1].

THEOREM 6. Let M be a timelike hypersurface of M and p be
a diagonal point in M. If the relation of the sectional curvatures
K(O'”) — K(0i;) > 0 and Ric(X,X) > ko{X,e1)? for timelike vector
X in T,M, then Ric(X,X) > 0, and X satisfies the generic condition
ifRiC(X X) > ko(X 61)2.

Now, we will consider Raychaudhuri equation. Given a timelike
geodesic segment 7 : [a,b] — M which may be extended to M, let
N(v(t)) be the n-dimensional subspace of T.y(tyM consisting of tangent
vectors orthogonal to v/(t), A(t) (1,1) tensor field on V*(7) as a linear

map from N(7(t)) to itself for each t, and R the curvature tensor of
M. Then a smooth tensor field A(t) satisfying

A" +RA=0 and ker(A(t)) Nker(A (t)) = {0}

is called a Jacobi tensor field, where ker(A(t)) is kernel of A(t). A
Jacobi tensor A satisfying

(A)A-A"A =0forall t € [a,b]

is called a Lagrange tensor field, where (A )* is adjoint of a.

If A is a Jacobi tensor field along a timelike geodesic, and B =
A’ A-1 at points where A~! is defined, then the expansion 0 the vor-
ticity w and the shear tensor o are defined by 6 = trB,w= (B BY)
and o = (B +B ) - QE respectively, where E is 1dent1ty transfor-
mation of N(vy (t)) and trB is trace of B. If Lagrange tensor field A
satisfies with trB = (trB)?, then A is called regular Lagrange tensor
field. As we know, the Raychaudhuri equation for Jacobi tensor fields
along timelike geodesic 7 is

2
0’ = —Ric(v,) — tr(w?) — tr(a?) - %
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If Lagrange tensor field A is regular, then the Raychaudhuri equation
reduces as _
¢ = _Ric(fyly’yl) - 02;
because B is self-adjoint and the vorticity tensor vanishes along 7.
Thus, _
Ric(v',y') = —{0' + 6*}.
Now, let us consider the inequality
0[ S _02

in the right hand term of the above equation. Integrating this inequal-
ity in the suitable domain (actually 6’ = —6? is the Bemoulh differen-
tial equation), we have

o<1
-t
where t is parameter of 8 in suitable domain. Thus, if
o< L
I

then _
Ric(+',v') > 0.

On the other hand, if 7(t) = p is a diagonal point, letting 7'(¢p) =
n
X = Z z;e; in T, M, where {e;} is an orthonormal basis of T, M which

=1
are eigenvectors for Sy as before,

Ric(X, X)

= ﬁZC(X,X) - zn:ei()() SN(ei)>2

=1

+ iei(‘s&(ei),ei) <SN(X)>X>

i=]

= Ric(X, X) - Zez (X,e:)? + Ze,% (SN(X), X)

i=1 =1

n
= Ric(X, X) — (—kiz} + k33 + - + kZa2) + ) _ ki(Sn(X), X).
i=1
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IfH= Zk, =0 and max{|k;| | i = 1,2,... ,n} = |k1], then

=1
Ric(X,X) > Ric(X, X) — k3(X, X).

Thus, we have the following result by Proposition 2.8 (1].

THEOREM 7. If a timelike geodesic segment <y in M has a diagonal
point at ty which may be extended to M, H = 0, Lagrange tensor
field introduced by «y is regular, the maximum of eigenvalues |k;|(i >

2) is |k1| at y(to) and its expansion 6 in M is bounded above by "

(parameter of «y is t), then Ric(v'(to),7 (o)) > 0 and 7'(to) satisfies
the generic condition.

A space-time is said to be causally disconnected if there is some
compact set A and two infinite sequences {p,} and {g»} diverging to
infinite such that for each n, pn < ¢n, and p, # g» and all future-
directed nonspacelike curves from p,, to g, meet A. p < ¢ means that
either p = ¢ or there is a smooth future-directed nonspacelike curve
from p to q. A space-time is said to be chronological if it contains
no closed timelike curve. If a space-time is an inextendible space-time
which has an inextendible incomplete nonspacelike geodesic, then the
space-time is said to have a singularity.

A space-time satisfies the timelike convergence condition if Ric(X, X)
> 0 for all nonspacelike tangent vectors in TM. By continuity, the
curvature condition of it is equivalent to the definition of Hawking and
Ellis [7]. In Hawking and Ellis [7], a space-time with energy momentum
tensor T is said to satisfy the weak energy condition if T'(X,X) > 0
for all timelike vectors X in TM. If Einstein equations hold for the
space-time and T with cosmological constant A, then the condition
Ric(X,X) > 0 for all timelike vectors X in T'M implies that

T(X,X) 2 (% - 8%) (X, X)

T
for all timelike vectors X in TM. If T(X, X) > (t_r2_) (X,X) for all

timelike vectors X in TM, the space-time and 7' are said to satisfy the
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strong energy condition. In the case of A = 0, this equivalent to the
condition Ric(X,X) > 0 for all timelike vectors X in TM. Thus, if the
space-time satisfies the timelike convergence condition or the strong
energy condition, then the space-time satisfies the null convergence
condition.

We will now apply these to the timelike hypersurface of a given
space, and the following theorem shows how the relation between the
two curvatures of M and M acts on the local universe to have a singu-
larity. This space-time will contain at least one nonspacelike geodesic
which is both inextendible and incomplete. Such a geodesic has an end
point P in causal boundary of M which may be thought of as being
outside the universe but not at infinity.

We have shown that, if a timelike hypersurface M of M is diagonal
type, M satisfies the generic condition under the additional conditions
on the relation between the curvature K of M and K of M. It may
be interpreted how the given universe can physically influence a local
spacetime in it. We can also deduce the strong energy condition with-
out the difficult computations in our procedure. Thus, applying these
results with the extra conditions to Penrose’s, Hawking’s and others
singularity theorems, we can see that M has singularities under the
different circumstances from the known singularity theorems so far.

THEOREM 8. Let a timelike hypersurface M of M be chronological
and satisfy the timelike convergence condition.

(1) If M with a smooth boundary point satisfies the hypothesis in
Theorem 3,4,5,6 or 7, then M is nonspacelike incomplete.

(2) If causally disconnected M satisfies the hypotheses in Theorem
3,4,5,6 or 7, then M is nonspacelike incomplete.

These are obtained from an extrinsic geometric condition on the
timelike hypersurface M of M which may imply these important phys-
ical conditions, that is, the generic condition or the strong energy con-
dition, which come from cosmology theory and general relativity. Thus,
it may be indicated to suggest that a certain universe in the given space
(if such a case is happened) can physically be studied with extrinsic
and intrinsic circumstance as we have shown in this paper.
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