• Title/Summary/Keyword: Diagnostic X-ray generators

Search Result 15, Processing Time 0.023 seconds

A Comparative Study on Output of Four Type Diagnostic X-ray Equipments (정류방식에 따른 진단용 X-선 장치의 출력비교)

  • Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.34-43
    • /
    • 1997
  • There are 4 types of equipment in diagnostic radiography. These are single phase, three phase, inverter type and condenser type X-ray generators. It is very confusing to make an adequate exposure factor and to know the usage of different type of X-ray generators. In this experiment, I explored a comparative study of outputs in 4 different type of X-ray units. I expect that this experiment could be helpful for manufacturer to make both the X-ray equipment better, In terms of Ideal exposure factors, thereby reducing the patient dose. Experimental results are as follow : 1) X-ray output The ratio of X-ray output of single, three phase and inverter type of X-ray generator was 1 : 1.6 : 2 without absorber and 1 : 2 : 2.6 with 20 mm aluminium absorber. 2) Beam quality The X-ray beam quality of single phase generator was proved to be softer than three phase and inverter type of generators by 0.4 mmAL and 0.55 mmAl HVL respectively. 3) Reproducibility Linearity of X-ray output Retroducibility of X-ray output met the regulation below CV 0.05 and linearity also met the regulation below 0.1 in 4 types of diagnostic X-ray generators. 4) The comparison of incident dose Three phase X-ray generator was 20% higher than two other X-ray generators in radiation dose to make same film density.

  • PDF

A Study on Safety Management Inspection of Diagnostic X-ray System (진단용 엑스선 장치의 안전관리 검사에 관한 연구)

  • Lee, Hoo min;Kim, Hyeon ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.887-893
    • /
    • 2018
  • The purpose of this study is to compare the performance of X-ray generators installed in hospitals and universities and apply the quality control items of diagnostic X-ray generators to recognize the importance of periodic performance management. First, the reproducibility and linearity test results showed that the PAE of the reproducibility evaluation was high for the GX-650 devices that met the acceptance criteria in all the experimental conditions and lacked the periodic quality control. In the linearity evaluation, when the tube voltage was set to 100 kVp, It was measured to deviate from the error. In addition, it was found that the PAE in the low-accuracy evaluation results relative to an X-ray tube voltage and tube current of the device low occurrence frequency. The HVL experiment was included in all of the devices at the HVL by tube voltage. Therefore, it is necessary to recognize the importance of quality control of all devices rather than hospital and laboratory, and to manage the device performance by actively managing the device, and to establish a short - term quality control system like special medical devices.

Evaluation of the Reproducibility of Radiation Output from Diagnostic X-ray Equipment(Standards Based on IEC 60601-2-54) (진단용 X선 장치에서 방사선출력의 재현성 평가(IEC 60601-2-54 표준규격을 기반으로))

  • Han, Beom-Hee;Jung, Hong-Ryang;Lim, Cheong-Hwan;Kim, Chong-Yeal;Lee, Sang-Ho;Han, Sang-Hyun;Hong, Dong-Hee;Kim, Chang-Gyu;You, In-Gyu;Mo, Eun-Hee
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.555-561
    • /
    • 2014
  • For five diagnostic X-ray generators (DR), four units turned out to be appropriate in tests on the reproducibility of radiation output suggested in the IEC 60601-2-54 standard, but in one unit of the X-ray equipment, an item measured in a combination of 50% of the highest tube voltage of the diagnostic X-ray equipment, the test setting of Group C with authorized output doses between $1{\mu}Gy$ and $5{\mu}Gy$ of mAs turned out to be inappropriate. As a result, the radiation dose to the IEC 60601-2-54 standard for quantification standards proposed by the radiation output from diagnostic X-ray imaging device reproducibility of performance management should be aware that an important evaluation factor.

Evaluation of the Filling Sodium States Inside the Fuel rod of Sodium-Cooled Fast Reactor by Optimized Spatial Resolution in Medical Digital Radiographic Images (의료용 디지털방사선영상의 공간분해능 최적화에 의한 소듐냉각고속로 연료봉 내부의 소듐 충전상태 평가)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2016
  • The purpose of this study was tried to evaluate the filling sodium states inside the fuel rod of sodium-cooled fast reactor by digital medical X-ray. We used the diagnostic X-ray generators in digital radiography (DR). This study have found the optimal conditions by changing the effective focal spot size of X-ray tube and post-processing of the DR method with a tungsten edge plate in order to ensure excellent sharpness At this time, the sharpness and resolution were evaluated using the MTF (modulation transfer function). As a result, this study obtained a spatial resolution of 3.871 lp/mm (0.1 MTF), 3.290 lp/mm (0.5 MTF) when implemented the contrast strengthen post-processing in small focal spot. In this research, the result is able to evaluate the level of sodium inside the fuel rod by using the diagnostic X-ray generators in medical digital radiographic images.

Radiation safety management for diagnostic radiation generators and employees in animal hospitals in Korea (동물병원의 진단용 방사선 발생장치 및 방사선종사자 안전관리 실태 조사)

  • An, Hyo-Jin;Kim, Chung-Hyun;Kwon, Young-Jin;Kim, Don-Hwan;Wee, Sung-Hwan;Moon, Jin-San
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.151-157
    • /
    • 2014
  • A nationwide survey on radiation safety management in Korean animal hospitals was conducted. By 2013, 53 radiation generators were registered as veterinary medical devices (41 X-ray generators and 12 computed tomography scanners). Additionally there were six approved laboratories for radiation equipment and protection facility, and five approved laboratories for radiation exposure of employees, respectively. By March 2013, 2,030 out of 3,829 animal hospitals operated radiation-generating devices. Among these devices, 389 (19.2%) out of 2,030 were not labeled with the model name and 746 (36.7%) were not labeled with production dates. Thus, most veterinary X-ray generators were outdated (42.6%) and needed replacements. When periodic inspections of 2,018 animal hospitals were performed after revision of the Veterinarians Act in 2011, the hospitals were found to be equipped with appropriate radiation generators and protection facilities. Among 2,545 employees exposed to radiation at the hospitals, 93.9% were veterinarians, 4.3% were animal nurse technicians, and 18% held other positions. Among 169 employees supervised by administrators, none of those had a weekly maximum operating load that exceeded $10mA{\cdot}min$. This study suggests that the radiation safety management system of animal hospitals was general good.

Leakage and Scattered Radiation from X-ray Unit in Radiography (영상의학과 엑스선 발생장치의 누설 및 산란선량 측정)

  • Im, In-Chul;Lee, Jae-Seung;Kweon, Dae-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.155-159
    • /
    • 2011
  • The purposed of this study were measured the radiation exposure of patients and workers by generators, and the protection state for radiation facilities. The subject of the study by X-ray generators in university hospitals of capital area, we measured the maximum irradiation condition of 80 kVp, 200 mA, 0.1 second in the control entrance, control room window, entrance of radiography, adjacent site. The leakage dose per week was which the control entrance was 0.11 mR/week, control room window was 0.15 mR/week, entrance of radiography was 0.12 mR/week and adjacent site was 0.06 mR/week with X-ray unit the mean And the leakage mean dose was 0.11 mR/week. Diagnostic X-ray tubes must ensure that the leakage radiation in the maximum leakage dose in week emitted by the tube outside the useful beam does not exceed certain levels provided by standards.

A high voltage resonant genrator for X-ray apparatus (X-선 발생기기용 공진형 고전압 발생기)

  • 김학성;원충연
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.217-225
    • /
    • 1996
  • This paper describes a high power resonant inverter for diagnostic X-ray generators using zero-voltage soft-switching technology. The system consists of a step-down chopper, a resonant phase-shift PWM inverter, a hihg-voltage diode, and high voltage cables a smoothing DC capacitor. The inverter makes use the leakage inductance of the hihg-voltage transformer and external capacitor as resonant components. The rectified input voltage is controlled by a step-down chopper with input voltage compensator. The output regualtion is obtained by a resonant phase-shift PWM inverter with the digital feedback controller using DSP (digital signal processor), resulting in fast rising time and wide output voltage variation. The theoretical results are correlated with results from an experimental prototype of a 7-kVp, 300mA (21kW).

  • PDF

Consistent Comparison for The Linearity Air Kerma of IEC Standards and Commercial Load in Diagnosing DR Generators (진단용 DR 발생장치에서 IEC 표준규격과 상용부하의 공기커마 직선성에 대한 일관성 비교)

  • Han, Beom-Hui;Kim, Chong-Yeal;Lee, Sang-Ho;Han, Sang-Hyun;You, In-Gyu
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.389-394
    • /
    • 2012
  • In this study, based on IEC 60601-2-54 standard load conditions presented in the limited interval over the air kerma at the absolute linearity closely evaluated by measuring the X-ray results were as follows: 10 units targeted all Diagnostic X-ray generating device (DR) presented in the IEC 60601-2-54 standard linearity of air kerma emerged as inappropriate, the general evaluation of the dose linearity from four in the top 50% and 80 kVp % of the two measurement series were as irrelevant all the rest from six of the top tube voltage of 50% and 80% of the two measurement series, appeared in all suitable. Presented in IEC 60601-2-54 standard dose linearity testing and conventional linearity tests showed many differences. IEC 60601-2-54 standard linearity in the proposed international standards of air kerma is the recommendation of the existing dose linearity considerably more feasible, and to quantify the amount of radiation as the standard suggested by the standard IEC 60601-2-54 air kerma of a diagnostic X-ray imaging device linearity performance management is considered key elements in the critical appraisal.

Effects of Contrast Improvement on High Voltage Rectification Type of X-ray Diagnostic Apparatus (X선 진단장치의 고압정류방식이 대조도 향상에 미치는 영향)

  • Lee, Hoo-Min;Yoon, Joon;Kim, Hyun-Ju
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.