DOI QR코드

DOI QR Code

Development of a Portable Device Based Wireless Medical Radiation Monitoring System

휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발

  • Received : 2014.05.30
  • Accepted : 2014.08.27
  • Published : 2014.09.30

Abstract

Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

각 의료기관 내 방사선 관련 종사자나 방사선 치료환자들은 진단 및 치료 시 필연적으로 의료상 피폭을 수반하게 된다. 국제방사선방호위원회(ICRP) 권고나 국제원자력기구(IAEA)의 기준에 따라 기준선량 제약치를 적용 및 권고 받고 있지만 1차 피폭대상자인 종사자나 환자들의 피폭최적관리를 위해서는 잠재적인 피폭대상자들에게 기존의 피폭관리 시스템보다 직접적이고 가용성이 높은 측정 및 분석 방법이 필요하다. 따라서 본 연구에서는 기존에 구비된 휴대용 단말과 연동하여 원거리에서 실시간으로 방사선 모니터링이 가능한 시스템을 개발하였다. 모니터링 시스템은 검출부, 영상부, 통신부 세 부분으로 구성되었다. 검출부는 시스템의 소형화를 위해 실리콘 광증배소자(silicon photomultiplier) 기반 섬광검출기를 설계하였으며, 영상부는 무선 CCD (charge-coupled device)카메라 모듈을 사용하여 검출부와 함께 Bluetooth 통신모듈을 통해 휴대용 단말로 측정된 방사선 정보와 영상이 전송된다. 제작된 시스템은 성능 평가를 위해 진단용 X-ray 발생장치와 $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, $^{90}Sr$ 선원을 사용하였다. 측정결과를 통해 개발된 시스템은 gamma, beta, X-ray에 대해서 검출 반응성을 확인하였고, 방사선 세기에 따른 응답 선형성과 MCNPX 전산코드를 이용한 측정 거리에 따른 시스템의 검출 정확도 평가 시 3% 내외의 오차범위를 확인하였다. 본 연구의 결과는 방사선 검출 시스템 구성의 비용절감 효과와 개인피폭정도관리에 기여할 것으로 기대한다.

Keywords

References

  1. ICRP. Managing Patient Dose in Computed Tomo graphy. ICRP Publication 87. 2000:3-4.
  2. Knoll GF. Radiation Detection and Measurement. 3rd ed. New York; John Wiley & Sons Inc. 2000:235.
  3. Bloser PF, Legere JS, Jablonski LF et. al. Silicon Photo-Multiplier readouts for Scintillator based gamma-ray detectors in Space. IEEE Nuclear Science Symposium Conference Record (NSS/MIC). 2010:357-360.
  4. Osovizky A, Ginzburg D, Manor A et. al. SENTIRAD-An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier. Nucl. Instrum. Meth. A. 2011;652:41-44. https://doi.org/10.1016/j.nima.2011.01.027
  5. Chavanelle J, Parmentier M. CsI(Tl)-PIN photodiode gamma-ray probe. Nucl. Instrum. Meth. A. 2003;504:321-324. https://doi.org/10.1016/S0168-9002(03)00761-7
  6. Park HM, Jeon SH, Lee HK et al. Design of a Silicon Photomultiplier Based Compact Radiation Detector for Homeland Security Screening. IEEE Advancements in Nuclear Instrumentation Measurement Methods and their Applications Conference Record (ANIMMA). 2013:1-5.
  7. McGregor DS, Bellinger SL, Bruno D et. al. Wireless neutron and gamma ray detector modules for dosimetry and remote monitoring. IEEE Nuclear Science Symposium Conference Record (NSS/MIC). 2007:808-812.
  8. Smith DS, Stabin MG. Exposure rate constants and lead shielding values for over 1,100 Radionuclides. Health Phys. 2012;102(3):271-291. https://doi.org/10.1097/HP.0b013e318235153a
  9. Paixao L. Facure A, Santos AM et. al. Monte Carlo study of a new I-125 brachytherapy prototype seed with a ceramic radionuclide carrier and radiographic marker. J. Appl. Clin. Med. Phys. 2012;13(3):74-82.

Cited by

  1. Development of a Wireless Gamma-ray Probe for Diagnosing and Evaluation of its Effectiveness vol.52, pp.2, 2015, https://doi.org/10.5573/ieie.2015.52.2.173
  2. Spectroscopic Properties of a Silicon Photomultiplier-based Ce:GAGG Scintillation Detector and Its Applicability for γ-ray Spectroscopy vol.40, pp.2, 2015, https://doi.org/10.14407/jrp.2015.40.2.073
  3. Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System vol.24, pp.2, 2015, https://doi.org/10.5369/JSST.2015.24.2.96
  4. Discrete Convolution-Based Energy Spectrum Configuring Method for the Analysis of the Intrinsic Radiation of 176Lu vol.21, pp.21, 2021, https://doi.org/10.3390/s21217040