• Title/Summary/Keyword: Diagnostic Reference dose Level

Search Result 50, Processing Time 0.03 seconds

Diagnostic Reference Levels for Patient Radiation Doses in Pelvis and Lumbar spine Radiography in Korea (우리나라의 골반 및 요추 엑스선검사에서의 환자선량 권고량)

  • Lee, Kwang-Yong;Lee, Byung-Young;Lee, Jung-Eun;Lee, Hyun-Koo;Jung, Seung-Hwan;Kim, Byung-Woo;Kim, Hyeog-Ju;Kim, Dong-Sup
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.401-410
    • /
    • 2009
  • Purpose : Pelvis and lumbar spine radiography, among various types of diagnostic radiography, include gonads of the human body and give patients high radiation dose. Nevertheless, diagnostic reference levels for patient radiation dose in pelvis and lumbar spine radiography has not yet been established in Korea. Therefore, the radiation dose that patients receive from pelvis and lumbar radiography is measured and the diagnostic reference level on patient radiation dose for the optimization of radiation protection of patients in pelvis and lumbar spine radiography was established. Methods : The conditions and diagnostic imaging information acquired during the time of the postero-anterior view of the pelvis and the postero-anterior and lateral view of the lumbar spine at 125 medical institutions throughout Korea are collected for analysis and the entrance surface dose received by patients is measured using a glass dosimeter. The diagnostic reference levels for patient radiation dose in pelvis and lumbar spine radiography to be recommended to the medical institutes is arranged by establishing the dose from the patient radiation dose that corresponds to the 3rd quartile values as the appropriate diagnostic reference level for patient radiation dose. Results : According to the results of the assessment of diagnostic imaging information acquired from pelvis and lumbar spine radiography and the measurement of patient entrance surface dose taken at the 125 medical institutes throughout Korea, the tube voltage ranged between 60~97 kVp, with the average use being 75 kVp, and the tube current ranged between 8~123 mAs, with the average use being 30 mAs. In the posteroanterior and lateral views of lumbar spine radiography, the tube voltage of each view ranged between 65~100 kVp (average use: 78 kVp) and 70~109 kVp (average use: 87 kVp), respectively, and the tube current of each view ranged between 10~100 mAs(average use: 35 mAs) and between 8.9~300 mAs(average use: 64 mAs), respectively. The measurements of entrance surface dose that patients receive during the pelvis and lumbar spine radiography show the following results: in the posteroanterior view of pelvis radiography, the minimum value is 0.59 mGy, the maximum value is 12.69 mGy and the average value is 2.88 mGy with the 1st quartile value being 1.91 mGy, the median being 0.59 mGy, and the 3rd quartile value being 3.43 mGy. Also, in the posteroanterior view of lumbar spine radiography, the minimum value is 0.64 mGy, the maximum value is 23.84 mGy, and the average value is 3.68 mGy with the 1st quartile value being 2.41 mGy, the median being 3.40 mGy, and the 3rd quartile value being 4.08 mGy. In the lateral view of lumbar spine radiography, the minimum value is 1.90 mGy, the maximum value is 45.42 mGy, and the average value is 10.08 mGy with the 1st quartile value being 6.03 mGy, the median being 9.09 mGy and the 3rd quartile value being 12.65 mGy. Conclusions : The diagnostic reference levels for patient radiation dose to be recommended to the medical institutes in Korea is 3.42 mGy for the posteroanterior view of pelvis radiography, 4.08 mGy for the posteroanterior view of lumbar spine radiography, and 12.65 mGy for the lateral view of lumbar spine radiography. Such values are all lower than the values recommended by 6 international organizations including World Health Organization, where the recommended values are 10 mGy for the posteroanterior view of pelvis radiography, 10 mGy for the posteroanterior view of lumbar spine radiography and 30 mGy for the lateral view of lumbar spine radiography.

  • PDF

Patient Radiation Dose Values During Interventional Cardiology Examinations in University Hospital, Korea (심장혈관 조영술과 심장혈관 인터벤션의 환자 선량 평가)

  • Kim, Jung-Su;Lee, Joun-Hyuk;Jung, Hae-Kyoung;Kim, Jung-Min;Cho, Byung Ryul
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • The use of cardiac angiography (CA) and the interventional procedures is rapidly increasing due to the increase in modern adult diseases. Cardiovascular intervention (CI) is an examination method where radiation is applied to the same area for a long period, and thus may cause skin injury. In this study, we investigate the diagnostic reference level (DRL) of the cardiovascular intervention (CI) carried out by medical institutions and use it as a tool to reduce patient exposure dose. In this study, the DRL was set by acquiring information about the cumulative fluoroscopy time, cumulative fluoroscopy dose-area product (DAP), radiography DAP, cumulative DAP, air kerma, number of video clips, and the total number of images from the cardiac angiography and interventional procedures performed on 147 patients. The DAPs corresponding to the DRL of cardiac angiography(CA) and that of the interventional procedures were shown to be $44.4Gy{\cdot}cm2$ and $298.6Gy{\cdot}cm2$, respectively; the corresponding DRLs of fluoroscopy time were shown to be 191.5s and 1935.3s, respectively. A DRL is not a strict upper bound for radiation exposure. However, the process of setting, enacting, and reviewing the DRLs for the dose by medical institutions will contribute to a reduction in the unnecessary exposure dose of patients.

Evaluation of Radiation Dose and Image Quality according to CT Table Height (CT 테이블 높이에 따른 방사선 선량 및 화질 평가)

  • Lee, Jongwoong;Jung, Hongmoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.453-458
    • /
    • 2017
  • Computed Tomography (CT) provides information on the Diagnostic Reference Level Computed Tomography Dose Index (CTDI) and Dose Length Product (DLP) for accurate diagnosis of patients. However, it does not provide a dose change according to the table height for the diagnostic reference level provided by the CT equipment. The purpose of this study was to evaluate the image and dose according to the table height change using phantom (PMMA: Polymethyl Methacrylate) in order to find the optimal image and the minimum dose during computed tomography examination. When examining using a 32 cm PMMA phantom with the same thickness as the abdomen of an adult, there was little change in dose with table height. However, the noise evaluation of the image caused a high fluctuation of noise depending on the table height. and in the case of the 16 cm PMMA phantom, the change of the noise was small, but the dose change was about 30%. In conclusion, the location of the patient and the center of the detector are important during computed tomography (CT) examinations. In addition, table height setting is considered to be important for examinations with optimized image and minimum dose.

A Study on the Diagnostic Reference Level of Skull Radiography in Digital Radiography (디지털 방사선 환경에서 두부 방사선검사 시 진단참고수준 검사조건에 대한 고찰)

  • Yeon-Jin, Jeong;Young-Cheol, Joo;Dong-Hee, Hong;Sang-Hyeon, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.897-904
    • /
    • 2022
  • The purpose of this study is to compare the difference in dose and image quality when applying the diagnostic reference level (DRL) test conditions for head radiography in a digital radiation environment and the test conditions currently applied in clinical practice. I would like to review the conditions of radiographic examination. In this study, the head model phantom was targeted, and the investigation conditions were divided into clinical conditions (Clinic), DRL value (DRL75), and DRL average value (DRLmean). For dose, Enterance surface dose (ESD) was measured, and for image quality, signal-to-noise ratio and contrast-to-noise ratio were measured and analyzed for comparison. The average values of skull anterior posterior(AP) ESD according to the changes in test conditions were Clinic 1214.03±4.21 µGy, DRL75 3017.83±8.14 µGy, DRLmean 2283.50±7.09 µGy, and skull lateral (Lat). The average value of ESD was statistically significant with Clinic 762.79±3.54 µGy, DRL75 2168.57±10.83 µGy, and DRLmean 1654.43±6.48 µGy (p<0.01). The average values of SNR and CNR measured in the orbital, maxillary sinus, frontal sinus, and sella turcica were statistically significant (p<0.01). As a result of this study, compared to DRL, the conditions used in clinical practice showed lower dose levels of about 58% for AP and about 70% for Lat., and there was no qualitative difference in terms of image quality. Through this study, it is necessary to consider a new diagnostic reference level suitable for the digital radiation environment, and it is considered that the dose should be reduced accordingly.

Establishment of Local Diagnostic Reference Levels of Pediatric Abdominopelvic and Chest CT Examinations Based on the Body Weight and Size in Korea

  • Jae-Yeon Hwang;Young Hun Choi;Hee Mang Yoon;Young Jin Ryu;Hyun Joo Shin;Hyun Gi Kim;So Mi Lee;Sun Kyung You;Ji Eun Park
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1172-1184
    • /
    • 2021
  • Objective: The purposes of this study were to analyze the radiation doses for pediatric abdominopelvic and chest CT examinations from university hospitals in Korea and to establish the local diagnostic reference levels (DRLs) based on the body weight and size. Materials and Methods: At seven university hospitals in Korea, 2494 CT examinations of patients aged 15 years or younger (1625 abdominopelvic and 869 chest CT examinations) between January and December 2017 were analyzed in this study. CT scans were transferred to commercial automated dose management software for the analysis after being de-identified. DRLs were calculated after grouping the patients according to the body weight and effective diameter. DRLs were set at the 75th percentile of the distribution of each institution's typical values. Results: For body weights of 5, 15, 30, 50, and 80 kg, DRLs (volume CT dose index [CTDIvol]) were 1.4, 2.2, 2.7, 4.0, and 4.7 mGy, respectively, for abdominopelvic CT and 1.2, 1.5, 2.3, 3.7, and 5.8 mGy, respectively, for chest CT. For effective diameters of < 13 cm, 14-16 cm, 17-20 cm, 21-24 cm, and > 24 cm, DRLs (size-specific dose estimates [SSDE]) were 4.1, 5.0, 5.7, 7.1, and 7.2 mGy, respectively, for abdominopelvic CT and 2.8, 4.6, 4.3, 5.3, and 7.5 mGy, respectively, for chest CT. SSDE was greater than CTDIvol in all age groups. Overall, the local DRL was lower than DRLs in previously conducted dose surveys and other countries. Conclusion: Our study set local DRLs in pediatric abdominopelvic and chest CT examinations for the body weight and size. Further research involving more facilities and CT examinations is required to develop national DRLs and update the current DRLs.

Survey of Technical Parameters for Pediatric Chest X-ray Imaging by Using Effective DQE and Dose (유효검출양자효율과 선량을 이용한 소아 흉부 X-선 영상의 기술적인 인자에 관한 조사)

  • Park, Hye-Suk;Kim, Ye-Seul;Kim, Sang-Tae;Park, Ok-Seob;Jeon, Chang-Woo;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.163-171
    • /
    • 2011
  • The purpose of this study was to investigate the effect of various technical parameters for the dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE) including the scatter radiation from the object, the blur caused by the focal spot, geometric magnification and detector characteristics. For the tube voltages ranging from 40 to 90 kVp in 10 kVp increments at the FDD of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at the same effective dose. The results showed that the eDQE was largest at 60 kVp when compares the eDQE at different tube voltage. Especially, the eDQE was considerably higher without the use of an anti-scatter grid on equivalent effective dose. This indicates that the reducing the scatter radiation did not compensate for the loss of absorbed effective photons in the grid. When the grid is not used the eDQE increased with increasing FDD because of the greater effective modulation transfer function (eMTF). However, most of major hospitals in Korea employed a short FDD of 100 cm with an anti-scatter grid for the chest radiological examination of a 15 month old infant. As a result, the entrance surface air kerma (ESAK) values for the hospitals of this survey exceeded the Korean DRL (diagnostic reference level) of $100{\mu}Gy$. Therefore, appropriate technical parameters should be established to perform pediatric chest examinations on children of different ages. The results of this study may serve as a baseline to establish detailed reference level of pediatric dose for different ages.

CT Examinations for COVID-19: A Systematic Review of Protocols, Radiation Dose, and Numbers Needed to Diagnose and Predict (COVID-19 진단을 위한 CT 검사: 프로토콜, 방사선량에 대한 체계적 문헌고찰 및 진단을 위한 CT 검사량)

  • Jong Hyuk Lee;Hyunsook Hong;Hyungjin Kim;Chang Hyun Lee;Jin Mo Goo;Soon Ho Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1505-1523
    • /
    • 2021
  • Purpose Although chest CT has been discussed as a first-line test for coronavirus disease 2019 (COVID-19), little research has explored the implications of CT exposure in the population. To review chest CT protocols and radiation doses in COVID-19 publications and explore the number needed to diagnose (NND) and the number needed to predict (NNP) if CT is used as a first-line test. Materials and Methods We searched nine highly cited radiology journals to identify studies discussing the CT-based diagnosis of COVID-19 pneumonia. Study-level information on the CT protocol and radiation dose was collected, and the doses were compared with each national diagnostic reference level (DRL). The NND and NNP, which depends on the test positive rate (TPR), were calculated, given a CT sensitivity of 94% (95% confidence interval [CI]: 91%-96%) and specificity of 37% (95% CI: 26%-50%), and applied to the early outbreak in Wuhan, New York, and Italy. Results From 86 studies, the CT protocol and radiation dose were reported in 81 (94.2%) and 17 studies (19.8%), respectively. Low-dose chest CT was used more than twice as often as standard-dose chest CT (39.5% vs.18.6%), while the remaining studies (44.2%) did not provide relevant information. The radiation doses were lower than the national DRLs in 15 of the 17 studies (88.2%) that reported doses. The NND was 3.2 scans (95% CI: 2.2-6.0). The NNPs at TPRs of 50%, 25%, 10%, and 5% were 2.2, 3.6, 8.0, 15.5 scans, respectively. In Wuhan, 35418 (TPR, 58%; 95% CI: 27710-56755) to 44840 (TPR, 38%; 95% CI: 35161-68164) individuals were estimated to have undergone CT examinations to diagnose 17365 patients. During the early surge in New York and Italy, daily NNDs changed up to 5.4 and 10.9 times, respectively, within 10 weeks. Conclusion Low-dose CT protocols were described in less than half of COVID-19 publications, and radiation doses were frequently lacking. The number of populations involved in a first-line diagnostic CT test could vary dynamically according to daily TPR; therefore, caution is required in future planning.

Measurement and Analysis of Pediatric Patient Exposure Dose Using Glass dosimeter and a PC-Based Monte Carlo Program (Glass dosimeter와 PCXMC Program을 이용한 소아피폭선량 측정 및 분석)

  • Kim, Young-Eun;Lee, Jeong-Hwa;Hong, Sun-Suk;Lee, Kwan-Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • Exposed dose of young child should be managed necessarily. Young child is more sensitive than adult of a Radioactivity, especially, and lives longer than adult. Must reduce exposed dose which follows The ALARA(As Low As Reasonably Achievable)rule is recommended by ICRP(International Commission on Radiological Protection)within diagnostic useful range. Therefore, We have to prepare Pediatric DRL(Diagnostic Reference Level) in Korea as soon as possible. Consequently, in this study, wish to estimate organ dose and effective dose using PCXMC Program(a PC-Based Monte Carlo Program), and measure ESD(Entrance surface dose)and organ dose using Glass dosimeter, and then compare with DRL which follows EC(European Commission)and NRPB(National Radiological Protection Board). Using glass dosimeter and PCXMC programs conforming to the International Committee for Radioactivity Prevention(ICRP)-103 tissue weighting factor based on the item before the organs contained in the Chest, Skull, Pelvis, Abdomen in the organ doses and effective dose and dose measurements were evaluated convenience. In a straightforward way to RANDO phantom inserted glass dosimeter(GD352M)by using the hospital pediatric protocol, and in a indirect way was PCXMC the program through a virtual simulation of organ doses and effective dose were calculated. The ESD in Chest PA is 0.076mGy which is slightly higher than the DRL of NRPB(UK) is 0.07mGy, and is lower than the DRL of EC(Europe) which is 0.1mGy. The ESD in Chest Lateral is 0.130mGy which is lower than the DRL of EC(Europe) is 0.2mGy. The ESD in Skull PA is 0.423mGy which is 40 percent lower than the DRL of NRPB(UK) is 1.1mGy and is 28 percent lower than the DRL of EC(Europe) is 1.5mGy. The ESD in Skull Lateral is 0.478mGy which is half than the DRL of NRPB(UK) is 0.8mGy, is 40 percent lower than the DRL of EC(Europe) is 1mGy. The ESD in Pelvis AP is 0.293mGy which is half than the DRL of NRPB(UK) is 0.60mGy, is 30 percent lower than the DRL of EC(Europe)is 0.9mGy. Finally, the ESD in Abdomen AP is 0.223mGy which is half than the DRL of NRPB(UK) is 0.5mGy, and is 20 percent lower than the DRL of EC is 1.0mGy. The six kind of diagnostic radiological examination is generally lower than the DRL of NRPB(UK)and EC(Europe) except for Chest PA. Shouldn't overlook the age, body, other factors. Radiological technician must realize organ dose, effective dose, ESD when examining young child in hospital. That's why young child is more sensitive than adult of a Radioactivity.

  • PDF

Evaluation of Approximate Exposure to Low-dose Ionizing Radiation from Medical Images using a Computed Radiography (CR) System (전산화 방사선촬영(CR) 시스템을 이용한 근사적 의료 피폭 선량 평가)

  • Yu, Minsun;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.455-464
    • /
    • 2012
  • This study suggested evaluation of approximately exposure to low-dose ionization radiation from medical images using a computed radiography (CR) system in standard X-ray examination and experimental model can compare diagnostic reference level (DRL) will suggest on optimization condition of guard about medical radiation of low dose space. Entrance surface dose (ESD) cross-measuring by standard dosimeter and optically stimulated luminescence dosimeters (OSLDs) in experiment condition about tube voltage and current of X-ray generator. Also, Hounsfield unit (HU) scale measured about each experiment condition in CR system and after character relationship table and graph tabulate about ESD and HU scale, approximately radiation dose about head, neck, thoracic, abdomen, and pelvis draw a measurement. In result measuring head, neck, thoracic, abdomen, and pelvis, average of ESD is 2.10, 2.01, 1.13, 2.97, and 1.95 mGy, respectively. HU scale is $3,276{\pm}3.72$, $3,217{\pm}2.93$, $2,768{\pm}3.13$, $3,782{\pm}5.19$, and $2,318{\pm}4.64$, respectively, in CR image. At this moment, using characteristic relationship table and graph, ESD measured approximately 2.16, 2.06, 1.19, 3.05, and 2.07 mGy, respectively. Average error of measuring value and ESD measured approximately smaller than 3%, this have credibility cover all the bases radiology area of measurement 5%. In its final analysis, this study suggest new experimental model approximately can assess radiation dose of patient in standard X-ray examination and can apply to CR examination, digital radiography and even film-cassette system.

Evaluation of Radiation Dose to Patients according to the Examination Conditions in Coronary Angiography (심장동맥 조영 검사 시 검사 조건에 따른 환자 선량 평가)

  • Yong-In Cho
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.509-517
    • /
    • 2023
  • This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.