• Title/Summary/Keyword: Dewatering

Search Result 246, Processing Time 0.031 seconds

A Study of Dewatering Phenomena of Potato Slice Cytorrhysed by High Molecules (고분자 용액의 세포 압착 현상에 의한 감자 절편의 탈수 현상에 관한 연구)

  • Choi, Dong-Won;Shin, Hae-Hun;Kim, Jong-Geu
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.358-365
    • /
    • 2006
  • To study simultaneous water and solute transport kinetics during soaking in concentrated solution, the influence of the concentration and molecular weight of the solute(polyethylene glycol(PEG) and NaCl) in the soaking solution and the temperature on the water loss and solute gain rates were observed by using a model vegetable tissue(potato). When potato slices$(4cm{\times}4cm{\times}0.1cm)$ soaked in 60% PEG solutions, the water loss rate of the early phase decreased with increasing of the molecular weight of PEG from 200 to 6,000, while the final water loss increased with increasing the molecular weight of PEG and it reached to 80%. The cell wall of potato tissue was permeable to NaCl and PEGs of which average molecular weight is smaller than 400 but it was not permeable to PEG 600 and larger molecules. PEG which has average molecular weight below 600 induced plasmolysis and those above 600 induced cytorrhysis. The water loss rate of potato sample soaked in smaller molecular weight PEG solution was faster than those soaked in higher molecular weight PEG solution before cytorrhysis happened. The water loss rate was reversed after cytorrhysis happened. The volume change of potato within the first 60 minutes was larger in low molecular PEG solution but the final ratio of decreasing volume was larger in high molecular PEG solutions. In PEG 200 solution, the potato tissue was slightly shrinked without shape change. However, in PEG 4,000 solution, volume of potato was reduced significantly and potato tissue was twisted.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

Effects of Sewage Treatment on Characteristics of Sludge as a Composting Material (하수처리가 퇴비화를 위한 하수 슬러지 특성에 미치는 영향)

  • Kim, Jae-Koo;Kim, Jong-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • The effects of sewage treatment on characteristics of sludge as a composting material were investigated for a year during the initial operation at the full-scale Chunan sewage treatment plant. Due to the shortage of design capacity of belt press, a sludge dewatering unit, non-volatile solids were recirculating and concentrating in the treatment plant, resulting in an increase of MLSS and a decrease in F/M ratio at the activated sludge system. Special attention is required for long term operations since the increase of non-volatile solids in the plant would deteriorates the treatment efficiency. The sewage sludge of the Chunan sewage treatment plant showed 79.5% of water content, 11.6% of organic content, and C/N ratio of 6.1, and contained As 1.8 mg/kg, Cd 27 mg/kg, Hg <0.1 mg/kg, Pb 54 mg/kg, T-Cr 370 mg/kg, and Cu 1,100mg/kg of heavy metals. In order to be used as raw material for optimum composting, the sewage sludge requires bulking agents for moistrure/porosity control and a carbon source for adjusting C/N ratio. However, the sewage sludge is not adequate as a soil conditioner after composing due to a high content of heavy metals. If the sewage sludge has to he used as a soil conditioner after composting, it as required to identify and remove tire industrial wastewater portions in tire influent of the plant since heavy metals in the influent were mostly concentrated in dewatered sludge.

  • PDF

Behavior of Geotextile Tube Composite Structure by 2-D Limit Equilibrium and Plane Strain Analysis (2차원 한계평형 및 평면변형해석을 통한 지오텍스타일 튜브 복합구조물의 거동분석)

  • Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The geotextile have been used in filtration and drainage for over 30 years in many applications of civil and environmental projects. Geotextile tube is compound technology of filtration and drainage property of geotextile. Geotextile have been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers, and other innovative systems involving containment of soils using geotextile. They are hydraulically filled with dredged materials. It have been applied in coastal protection and scour protection, dewatering method of slurry, and isolation of contaminated material. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. This paper presents the behavior of geotextile tube composite structure by 2-D limit equilibrium and plane strain analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure for the lateral load and also the plane strain analysis was conducted to determine the design and construction factors. Based on the results of this paper, the three types of geotextile tube composite structure is stable. And the optimum tensile strength of geotextile is 151kN/m and maximum pumping pressure is 22.7kN/m.

  • PDF

Application of Cold-Osmotic Dehydration Method for Extending the Shelf Life during Frozen Storage of Filleted and Salted Fishes (염지어(鹽漬漁) 동결저장 중 Shelf life 연장을 위한 저온삼투압탈수법(低溫?透壓脫水法)의 적용)

  • Lee, Eung-Ho;Lee, Jung-Suck;Joo, Dong-Sik;Cho, Soon-Yeong;Choi, Heung-Gil;Kim, Jin-Soo;Cho, Man-Gi;Cho, Duck-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.722-729
    • /
    • 1997
  • The study was undertaken to extend the shelf life of filleted and salted fishes such as mackerel and jacopever. These filleted and salted fishes were dehydrated by dewatering sheet containing sodium polyacrylate resin at $5{\pm}1^{\circ}C$, wrapped with low density polyethylene film, and then stored at $-18{\pm}2^{\circ}C$. During the frozen storage, the change of brown pigment formation, peroxide value, carbonyl value, drip formation content in the cold-osmotic dehydrated fishes after salt dipping were much lower than those of non-dehydrated ones. Moreover, the proteins and Ca-ATPase in the cold-osmotic dehydrated fishes after salt dipping were more stable than those of non-dehydrated ones during frozen storage. It was supposed that the cold-osmotic dehydration pretreatment processing for filleted and salted fishes was useful in improvement of the frozen storage stability.

  • PDF

Effect of Sludge Conditioner on Dewaterability of Sludge Produced from the Anaerobic Digestion of Food Waste (음식물 쓰레기의 혐기성 소화 슬러지의 응집 및 탈수 특성에 미치는 영향)

  • Park, Jong-Bu;Choi, Sung-Su;Park, Seung-Kook;Hur, Hyung-Woo;Han, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.104-110
    • /
    • 2001
  • In this study, the effect of physico-chemical variables on sludge conditioning was determined to enhance dewaterability of effluent produced from the thermophilic anaerobic digestion of food waste. The gas production rate and methane content during the anaerobic digestion of food waste were $1.1m^3/kg$ VS and 63%, respectively, and the biodegradability of volatile solids was 87.5%. The concentrations of CODcr, TKN and TP of effluent from digestor were 18,500mg/L, 2,800mg/L, and 582mg/L, respectively. At the jar test to screen the flocculant for the dewatering of effluent from digestor, $FeCl_3$ and strong cationic polymer were effective on making flocs in the effluent. The condition of flocculation of effluent were 500mg/L of $FeCl_3$ and 50-100 mg/L of strong cationic polymer, respectively. As the result of measuring of dewaterability potential of effluent to determine the mixing ratio between $FeCl_3$ and polymer by capillary suction time(SCT), optimum condition was 500mg/L of $FeCl_3$ and 80mg/L of strong cationic polymer.

  • PDF

Empirical Study on Applicability of Phosphorus Recovery Process in Wastewater Treatment Plant (하수처리시설에서 인 회수공정의 도입 가능성에 대한 실증적 검토)

  • Park, Na-ri;Chang, Hyang-Youn;Lim, Hyun-Man;Ahn, Kwang-Ho;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.40-49
    • /
    • 2017
  • In this study, we have made the annual total phosphorus (TP) mass balance diagrams for I wastewater treatment plant by utilizing the data of flow rate and TP of each process and tried to choose the optimum unit process empirically for phosphorus recovery. For the applicability evaluation, we have suggested several quantitative indices of flow rate, TP concentration, TP load and SS. Based on the analyses of TP mass balance, it became clear for reducing TP load of the wastewater treatment plant that it is efficient to recover phosphorus from the side stream in which the amount of flow rate is just 1/16, but TP concentration and load are 78 and 4.8 times larger than those of the influent of the plant. After the detailed applicability evaluation for the side stream, it could be concluded that the unit process of waste activated sludge thickener supernatant or dehydration filtrate are appropriate. Meanwhile, we did fundamental experiments utilizing the dewatering filtrate with TP concentration of 141.5 mg/L. After adjusting pH 10 and $Ca^{2+}$ concentration 250, 500, 1000 mg/L, it was stirred slowly. As a result, the $PO_4-P$ and TP removal efficiencies were above 95 percent; the results of the experiment imply the applicability of phosphorus recovery process in a wastewater treatment plant strongly.

Removal of PVC from Mixed Plastic Waste by Combination of Air Classification and Centrifugal Process (풍력(風力) 및 습식비중(濕式比重) 선별(選別)에 의한 혼합(混合)폐플라스틱 종말품(終末品)으로부터 PVC 제거(除去)에 관한 연구(硏究))

  • Choi, Woo-Zin;Yoo, Jae-Myung
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.71-76
    • /
    • 2007
  • The mixed plastic waste generated from households after hand-picking and/or mechanical sorting processes amounts to 1,750,000 ton in 2006, and most of these waste are finally end up with landfill and/or incineration due to the lacks of separation technologies and economical reasons. The mixed plastic wastes can not be used as raw materials for chemical and/or thermal recycling processes because of their high content of PVC(upto 4.0 wt.%). In the present research, gravity separation system has been developed to remove PVC from the mixed plastic waste and to recover the PO-type plastics. This system mainly consists of air classification, magnetic separation, one-step crushing, feeding system at fixed rate and wet-type gravity separation system. The gravity system based on centrifugal separation has been developed at capacity of 0.5 ton/h and it consists of mixing, precleaning, separation, dewatering, recovery system and wastewater treatment system, etc. The main objective of this process is to achieve high separation efficiency of polyolefins with less than 0.3 wt.% PVC content and less than 10% moisture content in the final products. In addition, a crushing unit of with 8 rotor system is also developed to improve the crushing efficiency of soft-type plastics. The system with a capacity of 1.0 ton/h is developed and operational results are presented.

Analysis of Influence Factors for Remediation of Contaminated Soils Using Prefabricated Vertical Drains (연직배수재를 이용한 오염지반 복원의 영향인자 분석)

  • Park, Jeongjun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2008
  • Due to the growth in industrialization, potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. There are a number of approaches to in-situ remediation that are used in contaminated sites for removing contaminants. These include soil flushing, dual phase extraction, and soil vapor extraction. Among these techniques, soil flushing was the focus of the investigation in this paper. Incorporated technique with PVDs has been used for dewatering from fine-grained soils for the purpose of ground improvement by means of prefabricated vertical drain systems. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. The modeling was intended to predict the effectiveness and time dependence of the remediation process. Modeling has been performed on the extraction, considering tracer concentration and laboratory model test characteristics. The computer model used herein are SEEP/W and CTRAN/W, this 2-D finite element program allows for modeling to determine hydraulic head and pore water pressure distribution, efficiency of remediation for the subsurface environment. It is concluded that the coefficient of permeability of contaminated soil is related with vertical velocity and extracted flow rate. The vertical velocity and extracted flow rate have an effect on dispersivity and finally are played an important role in-situ soil remediation.

  • PDF

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF