• Title/Summary/Keyword: Devonian

Search Result 30, Processing Time 0.031 seconds

Devonian Strata in Imjingang Belt of the Central Korean Peninsula: Imjin System (임진강대의 중부 고생대층: 임진계)

  • Choi, Yong-Mi;Choh, Suk-Joo;Lee, Jeong-Hyun;Lee, Dong-Chan;Lee, Jeong-Gu;Kwon, Yi-Kyun;Cao, Lin;Lee, Dong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.107-124
    • /
    • 2015
  • The 'Imjin System' (or Rimjin System) was established in 1962 as a new stratigraphic unit separated from the Upper Paleozoic Pyeongan System based on the discovery of brachiopods and echinoderms of possible Devonian age. Subsequent discoveries of the Middle Devonian charophytes confirmed the Devonian age of the system. The Imjin System is distributed in the Imjingang Belt between the Pyongnam Basin and the Gyeonggi Massif, spans from the eastern areas including Cholwon-gun of the Gangwon Province, Gumchon-gun, Phanmun-gun, and Tosan-gun of the Hwanghaebuk Province, to the western areas of Gangryong-gun and Ongjin-gun of the Hwanghaenam Province, and includes the Yeoncheon Group (metamorphic complex) to the south. Unlike the lower Paleozoic strata in the Pyongnam Basin which solely produce marine invertebrate fossils, the Imjin System yields diverse non-marine plant and algal fossils. Brachiopods of the system are similar to those from the Devonian of the South China Block and include taxa endemic to the platform, implying a close paleogeographic affinity to the South China Block. The Imjin System is generally considered as of Middle to Late Devonian in age, although there have been suggestions that the system is of the Middle Devonian to Carboniferous in age. North Korean workers postulated that the Imjin System was deposited in the current geographic position, where the "Imjin Sea" (an extension of the South China Platform) was located during the Devonian. The Imjin System displays strong local variations in stratigraphy and its thickness. It has recently been reported that the strata are repeated and overturned by thrust faults in many exposures. The Yeoncheon Group a southward extension of the Imjin System, also experienced intense tight folding and contractional deformation. Northward decrease in metamorphic grade within the system suggests that the northern part of the Gyeonggi Massif and the Imjingang Belt are probably an extension of the Dabie-Sulu Belt between the South China and Sino-Korean blocks, and the Imjin System is an remnant of accretion resulted from the collision between the two blocks. In order to understand tectonic evolution and Paleozoic paleogeography of eastern Asia, further studies on stratigraphic, sedimentologic and tectonic evolution of the Imjin System involving scientists from the two Koreas are urgently needed.

Geochemical Characteristics of Devonian Bitumen Carbonates in Alberta, Canada (캐나다 데본기 비투멘 탄산염암의 지화학적 특성 연구)

  • Kil, Young-Woo;Kim, Ji-Hoon;Choi, Ji-Young;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.365-375
    • /
    • 2012
  • The objective of this study is to investigate inorganic characteristics of Devonian bitumen carbonates in Alberta using two drilling cores, Saleski 03-34-88-20w4 and Saleski 08-01-88-20w4, taken from the Core Research Center (CRC) of Canada. The bitumen carbonates are mainly composed of less than 0.2 mm dolomites and some carbonate includes small amount of quartz and calcite. The bitumen carbonates from two cores are interpreted to have formed in similar sedimentary environments and dolomitization processes. Carbonates from Saleski 03-34-88-20w4 core were formed under higher inflow of clastic sediment than those from Saleski 08-01-88-20w4 core. Range of crystallization temperature of dolomites in the both bitumen carbonate cores is about 40~$55^{\circ}C$. Dolomitizing fluid of the bitumen carbonates would be Devonian seawater. Bitumen carbonates from Cairn Formation, compared with the CRC cores, have experienced a similar crystallization temperature, but dolmititizing fluid of the bitumen carbonates from Cairn Formation have been modified from the isotopic exchange with continental crust.

Geochemical Characteristics of Devonian Cairn Formation in Alberta, Canada (캐나다 알버타 지역의 데본기 Cairn층의 지화학적 특성 연구)

  • Park, Myong-Ho;Kim, Ji-Hoon;Lee, Sung-Dong;Choi, Ji-Young;Kil, Yong-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.85-100
    • /
    • 2010
  • Devonian Cairn Formation is one of the important hydrocarbon reservoirs in Alberta, Canada. However, the Cairn Formation, outcropped in the study area, is not prospective reservoir with poor porosity and permeability by some late diagenetic processes. In this study, geochemical characteristics of the Cairn Formation were studied to use these preliminary results for advanced geological and geophysical petroleum explorations in the near future. Rock-Eval pyrolysis showed that total organic carbon content is less than 0.3 wt.%, indicating a minor amount of bitumen and/or other hydrocarbons. The carbonates in the Cairn Formation are mainly composed of subhedral and anhedral dolomites. Pore sizes in the carbonate are various, ranging from nanometer to micrometer. Clastic sediments increase in the upper and lower parts of the Cairn Formation, probably due to changing its depositional conditions. The Cairn Formation can also be divided into several intervals based on Ca/Mg ratio in dolomite and degree of amount of calcite. These could be formed by different sedimentary environment, degree of cementation and recrystallization, different saline/fresh water, etc.

Seismic Stratigraphy of Upper Devonian Carbonates Area in Northern Alberta, Canada (캐나다 북부 알버타주 데본기 후기 탄산염암 지역의 탄성파 층서)

  • Lee, Min-Woo;Oh, Jin-Yong;Yun, Hye-Su
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.503-511
    • /
    • 2011
  • The Upper Devonian Grosmont Formation in northern Alberta, Canada, underlies the erosion unconformity that formed between the Cretaceous and Upper Devonian. The formation is divided into four units on the basis of intercalated shales and showing a typical shelf environment of shallowing-upward. It was possible to separate four units(LG~UG3), considering the seismic interpretation attributes of polarity, continuity, frequency/spacing and amplitude and showing the reflection characteristics of the medium-high amplitude, medium-low frequency, good continuity, and subparallel reflection events. The formation can be interpreted as shelf or platform, based on in-situ core data. However, it is difficult, only with reflection attributes and features, to recognize the boundaries and sedimentary environment of parasequence. Therefore, we try to interprete by parasequence set in this study. The parasequence set was formed by erosion unconformity with systems tracts. The erosion unconformity can be recognized by facies data and karst, erosional surface. Grosmont carbonate deposits ranging from platform and shelf to shelf slope are; by wedge-shaped strata of characterized by complex sigmoid-oblique progradational configurations, reflecting a depositional history of upbuilding and outbuilding in response to sea-level changes. Most of the sedimentary units is interpreted as platforms under regression and lowstand environments that support is evidences. In particular, shale layer at the basal part of the highstand systems tracts represents the regressive to lowstand of sea level.

The study on the Igneous Activity in the Southeastern Zone of the Ogcheon Geosynclinal Belt, Korea(I) with the Igneous Activity in Namweon-Geochang-Sangju Area (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(I): 남원(南原)-거창(居昌)-상주(尙州) 지역(地域)을 중심(中心)으로)

  • Kim, Yong Jun;Park, Yong Seog;Choo, Seung Hwan;Oh, Mihn Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.355-370
    • /
    • 1989
  • Igneous rocks of study area consist of Pre-Cambrian orthogneiss, Devonian granite, Triassic foliated granites and Jurassic granites distributed along the southeast margin of Ogcheon Geosynclinal belt(SE-zone), and irregular shaped granitic stocks in the central part of the belt(C-zone). Anorthosite and gaabbro are also present in southern part of the SE-zone in the belt and intruded into gneiss complex of Ryongnam massif. Distribuition of foliated granites shows three linear arrangements which are composed of hornblende-biotite foliated granodiorite, porphyritic foliated granodiorite, biotite foliated granodiorite, leuco foliated granite and two mica foliated granite. Foliated granites generated by dextral strike slip movement at deep level. Jurassic granites composed of several rock facies are considered to be formed by differentiation of magma during Daebo Orogeny. A general trend of the chemical composition of these igneous rocks in study area suggests that most of them corresponding to calc-alkaline rock series was affected under orogeny and I-type granite except for two mica foliated granite. In chondrite normalised REE pattern of these igneous rocks, LREE shows more variable range and strong (-)Eu anomaly than HREE. Geochronological episodes of igneous activity from early Proterozoic to Cretaceous in SE-zone of Ogcheon Geosynclinal belt are two more Pre-Cambrian Orogeny, Devonian Orogeny(Variscan), Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

Characteristics of Fracture System of the Upper Devonian Grosmont Formation, Alberta, Canada (캐나다 앨버타 상부 데본기 Grosmont층의 불연속면 구조 특성)

  • Um, Jeong-Gi;Kim, Min-Sung;Choh, Suk-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.790-799
    • /
    • 2010
  • The Upper Devonian Grossmont Formation in Alberta, Canada reserves an estimated 50 billion cubic meters of bitumen and possess about 1/6 of the total bitumen resources in northern Alberta. However, unlike the overlying Athabasca oil sands, non conventional bitumen resources has not been developed as yet. The carbonate rocks of Grosmont Formation have been subject to various stages of diagenesis, including dolomatization and karstification with a strong effect on the distribution of porosity and permeability, which resulted in highly heterogeneous reservoirs. An extensive fracture logging and mapping was performed on total of six boreholes located in the study area to explore the characteristics of fracture geometry system and the subsurface structures of carbonates reservoir that holds bitumen. Fractal dimension was used as a measure of the statistical homogeneity of the fractured rock masses. The applicability of random Cantor dust, Dc, as a fractal parameter was examined systematically. The statistical homogeneity of fractured carbonates rock masses was investigated in the study area. The structural domains of the rock masses were delineated depthwise according to estimated Dc. The major fracture orientation was dominated by horizontal beddings having dip of $0-20^{\circ}$. Also, fractures having high dip angles existed with relatively low frequency. Three dimensional fracture network modeling for each structural domain has been performed based on fracture orientation and intensity, and some representative conceptual models for carbonates reservoir in the study area has been proposed. The developed subsurface conceptual models will be used to capture the geomechanical characteristics of the carbonates reservoir.

  • PDF

Contribution of Geophysics to the Study of Barite Mineralization in the Paleozoic Formations of Asdaf Tinejdad (Eastern Anti Atlas Morocco)

  • Ibrahim, Dakir;Ahmed, Benamara;Habiba, Aassoumi;Abdessalam, Ouallali;Youssef, Ait Bahammou
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • The use of the geophysical method in mining prospecting has been studied in the Asdaf region (South-East of Morocco). The objective of the study is to examine the aptitude of the electrical technique, in this case induced polarization (IP) and electric tomography, combined with the electromagnetic method (VLF), in the exploration of barite . The result obtained by the pseudo-sections of electrical tomography and that of KH filtration highlighted anomalies of resistant contact (greater than 400Ω.m) and of high charge chargeability (5mV / V). These contacts are hosted in less resistant Devonian age shale and sandstone. The resistivity response obtained at their level is characteristic of the venous structures associated with barite mineralization. The direction of the mineralized veins is parallel to the direction of the fractured zones (NE-SW), which indicates that the mineralization in place is due to the tectonic movements of the Hercynian orogeny (from Devonian to Permian). These veins are aligned with the locations of abandoned mine shafts and with surface mining areas. Geophysical technique therefore seems to play a key role in barite mining exploration.

Petrographic and Magnetic Fabric Investigation of the Tadaout-Tizi n'Rsas Dyke Swarms in the Eastern Anti-Atlas, Morocco

  • Daoud, Mustapha Ait;Essalhi, Mourad;Essalhi, Abdelhafid;Toummite, Abdeslam
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.629-647
    • /
    • 2021
  • Located in the eastern part of the Anti-Atlas, the Tafilalet region shows numerous dykes and sills that crosscut the Paleozoic terrains. The magmatic structures (dykes and sills) of the Tadaout-Tizi n'Rsas (TTR) anticline is studied here, it located neighboring the main branch of the Anti-Atlas Major Fault (AAMF), known in this location as the Oumejrane-Taouz Fault (OJTF). The N20° to N60° trending dykes crosscut the Paleozoic formations (Ordovician to Devonian), whereas sills are injected into the Silurian and Devonian ones. The dyke swarms of TTR have been studied using the Anisotropy of Magnetic Susceptibility (AMS), petrographic study and structural analyses. The petrographic study of the TTR doleritic dykes shows a dominance of plagioclase feldspars, alkali feldspars, amphiboles, pyroxenes and biotite. The dykes contain also mesotype (natrolite), sphene (titanite), apatite, actinolite and pegmatitic enclaves of biotite, orthoclase feldspars and pelites. Concerning field works, they show the deformation of TTR dykes by the Variscan tectonics events, it is marked by the presence of displacements (strike-slip faults) and cleavages. The Magnetic Susceptibility (MS) measured on magmatic specimens show the dominance of ferromagnetic and paramagnetic minerals. The high values of MS in the dykes are due to the presence of hematite, amphibole, pyroxene and biotite. In addition their magnetic fabric, determined by our AMS study, allows us to reconstitute the tectonic event which affected the magmatic bodies. This one is characterized by a magnetic foliation and a NNW-trending lineation that reflect the Variscan shortening orientation.

Inorganic and Organic Geochemical Characteristics of Devonian Bitumen Carbonate in Alberta, Canada (캐나다 데본기 비투멘 탄산염암의 무기 및 유기 지화학적 특성 연구)

  • Choi, Ji-young;Kim, Ji-Hoon;Kil, Yong-Woo;Lee, Sung-Dong;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.21-35
    • /
    • 2011
  • Inorganic and organic geochemical characteristics of Devonian bitumen carbonates in Alberta were studied using two drilling cores, Saleski 03-34-88-20w4 and Saleski 08-01-88-20w4, taken from the Core Research Center of Canada. The results of elements analyses showed high Total Inorganic Carbon, low Total Nitrogen and Total Sulfur, and Rock-Eval pyrolysis showed double $CO_2$ peaks in the oxidation part. These mean that the Devonian bitumen carbonates are mainly composed of dolomite formed by diagenesis, and its crystal texture is dominantly subhedral to anhedral but often euhedral. Bitumen contents were 3.6~19.0% in Saleski 3-34-88-20w4 and 5.0~16.4% in Saleski 08-01-88-20w4, respectively. As samples color become dark, bitumen and Total Organic Carbon contents are generally increasing in two cores. The results of biomarker analyses showed that the contents of resins and asphaltenes were 5~28% higher than those of saturated hydrocarbon, interring that the bitumen has been heavily biodegradated. According to the results of carbon isotope analyses in each component of bitumen, asphaltenes had highest values and the others had constant values. However, their values were varied in the range of normal crude oil (-18~-30‰).