DOI QR코드

DOI QR Code

Inorganic and Organic Geochemical Characteristics of Devonian Bitumen Carbonate in Alberta, Canada

캐나다 데본기 비투멘 탄산염암의 무기 및 유기 지화학적 특성 연구

  • Choi, Ji-young (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Ji-Hoon (Korea Institute of Geoscience and Mineral Resources) ;
  • Kil, Yong-Woo (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Sung-Dong (E&P Technology Institute, Korea National Oil Corporation) ;
  • Park, Myong-Ho (E&P Technology Institute, Korea National Oil Corporation)
  • 최지영 (한국지질자원연구원) ;
  • 김지훈 (한국지질자원연구원) ;
  • 길영우 (한국지질자원연구원) ;
  • 이성동 (한국석유공사 석유개발연구원) ;
  • 박명호 (한국석유공사 석유개발연구원)
  • Received : 2010.10.29
  • Accepted : 2011.01.17
  • Published : 2011.02.28

Abstract

Inorganic and organic geochemical characteristics of Devonian bitumen carbonates in Alberta were studied using two drilling cores, Saleski 03-34-88-20w4 and Saleski 08-01-88-20w4, taken from the Core Research Center of Canada. The results of elements analyses showed high Total Inorganic Carbon, low Total Nitrogen and Total Sulfur, and Rock-Eval pyrolysis showed double $CO_2$ peaks in the oxidation part. These mean that the Devonian bitumen carbonates are mainly composed of dolomite formed by diagenesis, and its crystal texture is dominantly subhedral to anhedral but often euhedral. Bitumen contents were 3.6~19.0% in Saleski 3-34-88-20w4 and 5.0~16.4% in Saleski 08-01-88-20w4, respectively. As samples color become dark, bitumen and Total Organic Carbon contents are generally increasing in two cores. The results of biomarker analyses showed that the contents of resins and asphaltenes were 5~28% higher than those of saturated hydrocarbon, interring that the bitumen has been heavily biodegradated. According to the results of carbon isotope analyses in each component of bitumen, asphaltenes had highest values and the others had constant values. However, their values were varied in the range of normal crude oil (-18~-30‰).

이 연구는 캐나다 Core Research Center 시추코어 Saleski 03-34-88-20w4와 Saleski 08-01-88-20w4를 이용하여 Rock-Eval 열분석, 원소분석, 바이오마커 (biomarker) 분석을 실시하여 비투벤을 함유한 캐나다 앨버타주 데본기 탄산염암의 무기 및 유가 지화학적 특정을 규명하고, 탄산염 저류층에 대한 지화학적 기초자료를 구축하는데 목적이 있다. 대부분 분석된 시료의 총무기탄소 함량은 높고 총질소와 총황의 함량은 매우 낮게 나타났으며 Rock-Eval 열분석 결과는 산화부분에서 돌로마이트를 많이 함유할 때 나타나는 이산화탄소 이중 피크가 관찰되었다. 이러한 결과는 비투멘을 함유한 퇴석암이 속성작용에 의해 형성된 도로마이트로 주로 구성된 타산염암임을 의미한다. 비투멘을 함유한 돌로마이트는 대부분 반자형 내지 타형의 결정구조를 보이며, 간혹 자형의 결정체를 띠기도 한다. 유기용매를 이용한 비투멘 추출 결과, Saleski 03-34-88-20w4는 3.6~19.0%. Saleski 08-01-88-20w4는 5.0~16.4%의 비투멘 함량분포를 보였다. 일반적으로 두 코어에서 시료의 색상이 어두울수록 비투멘과 총유기탄소의 함유량이 높게 나타났다. 바이오마커 분석 결과, 레진 (resins)과 아스팔텐 (asphaltenes)의 함유량이 포화 탄화수소 (saturated hydrocarbon)의 함유량보다 5~28% 높게 나타났다. 이러한 분석 결과는 비투멘이 강한 생분해작용 (biodegradation)을 받았음을 의미한다. 비투벤의 각 성분에 대한 탄소 동위원소 분석결과 아스팔텐에서 가장 높은 탄소 동위원소 비를 보이고 포화 탄화수소에서 가장 낮은 탄소 동위원소 비를 보였지만 각 성분의 분석값은 거의 일정하였다. 일반적으로 모든 원유에서 탄소 동위원소 비는 -18~-30‰입 좁은 범위를 가지며, 시추코어 Saleski 03-34-88-20w4와 Saleski 08-01-88-20w4의 분석값도 이 범위 딴에서 변하였다.

Keywords

Acknowledgement

Grant : 비재래 탄산염암의 3D 지질구조 구축 기술개발

Supported by : 한국석유공사

References

  1. Bachu, S. and Underschults, X. (1993) Hydrogeology of formation waters, northeastern Alberta Basin. AAPG Bull, v.77, p.1745-1768.
  2. Belyea, H.R. (1952) Notes on the Devonian system of the northcentral plains of Alberta. Geol. Surv. Can., v.52-27, p.66.
  3. Belyea, H.R. (1956) Grosmont Formation in the Loon Lake area. Alberta Soc. Petrol. Geo. J., v.4, p.66-69.
  4. Belyea, H.R. (1964) Upper Devonian, part II, Woodbend, Winterburn and Wabamun Groups. In: McCrossan, R.G., Glaister, R.P., Geological History of Western Canada. Alberta Soc. Petrol. Geol., Calgary, p. 66-68.
  5. Belyea, H.R. and McLaren, D.J. (1962) Upper Devonian formations, southern part of Northwest Territories, northeastern British Columbia, and northwest Alberta. Geol. Surv. Can., Paper 61-29, p.74.
  6. Briggs, P.J., Beck, P.L., Black, C.J.J. and Bissell, R. (1988) Development of Heavy-oil Reservoirs. JPT, Feb., p.206-214.
  7. Brooks. P.W., Fowler, M.G. and MacQueen, R.W. (1988) Biological marker and conventional organic geochemistry of oil sands/heavy oils. Western Canada Basin. Org. Geochem., v.12, p.519-538.
  8. Buschkuehle, B.E., Hein, F.J. and Grobe, M. (2007) An overview of the geology of the Upper Devonian Grosmont carbonate bitumen deposit, northern Alberta. Canada Nat. Resour. Res., v.16, p.3-15. doi: 10.1007/s11053-007-9032-y.
  9. Dembicki, E.A. (1994) The Upper Devonian Grosmont Formation: Well-log evaluation and regional mapping of a heavy oil carbonate reservoir in northeastern, Alberta. MS Thesis, Univ. Alberta, Edmonton, 221p.
  10. Dembicki, E.A. and Machel, H.G. (1996) Recognition and delineation of paleokarst zones by the use of wireline logs in the bitumen-saturated Upper Devonian Grosmont Formation of northeastern Alberta, Canada. AAPG Bull, v.80, p.695-712.
  11. Eccles, D.R., Bietting, M. and Skupinski, A. (2001) Bedrock and stream sediment geochemical analysis and field observations of the sub-Cretaceous unconformity, northeast Alberta (NTS 74E and north half 74D). Alberta Energy and Utilities Board/Alberta Geological Survey, Geo-Note 2001-01 (CDROM).
  12. England, W. and Cubitt, J. (1995) The Geochemistry of Reservoirs. Geol. Soc. Sp. Publ., 86p.
  13. Espitalie, J., Deroo, G. and Marquis, F. (1985) La pyrolyse Rock-Eval et ses applications. Parts 1 and 2. Rev. Inst. Franc. Petrole., 40, 563-579/755-784 (in French) https://doi.org/10.2516/ogst:1985035
  14. Gallup, W.B. (2005) Sulphur prospect permit no. 147. Alberta Energy and Utilities Board/Alberta Geological Survey, Mineral abstracts, MIN 19680123: http://www.ags.gov.ab.ca.
  15. Gunter, W.D., Bachu, S., Buschkuehle, M., Michael, K., Ordorica-Garcia, G. and Hauck, T. (2009) Reduction of GHG emissions by geological storage of $CO_{2}$: Anatomy of the Heartland Aquifer Red water Carbon Capture and Geological Storage Project (HARP), Alberta. Canada. Intern. J. Climate Change Strat. Manage., v.1, p.160-178. https://doi.org/10.1108/17568690910955621
  16. Gurgey, K. (2003). An attempt to recongnise oil populations and potential source rock types in Paleozoic sub- and Mesozoic-Cenozoic supra-salt strata in the southern margin of the Pre-Caspian Basin, Kasakhstan Republic. Org. Geochem., 33, 723-741.
  17. Hall, E.T. (2005) Preliminary geological report, sulphur prospecting permit no. 91, Mikkwa River area, northcentral Alberta, Supplement. Alberta Energy and Utilities Board/Alberta geological survey, Mineral abstracts, MIN 19680085: http://www.ags.gov.ab.ca.
  18. Harrison, R.S. (1982) Geology and production history of the Grosmont carbonate platform pilot project, Alberta: Proc. 2nd Intern. Conf. Heavy Crude and Tar Sands, UNITAR (Caracas, Venezuela), p.12.
  19. Harrison, R.S. and McIntyre, B.G. (1981) The geologic setting of the Grosmont thermal recovery project, northeastern Alberta: Alberta Oil Sands and Technology Research Authority (AOSTRA). Seminar on Advances in Petroleum Recovery and Upgrading Technology, Proc. Calgary, p.11.
  20. Hein, F.J. (2006) Oil sands and heavy oil in North America: An overview and summary. Nat. Resour. Res., v.15, p.67-84. doi: 10.1007/s11053-006-9016-3.
  21. Huebscher, H. (1996) Regional controls on the stratigraphic and diagenetic evolution of the Woodbend group carbonates, north-central Alberta. Ph. D Thesis, Univ. Alberta, Edmonton, p.231.
  22. Kauffman, R, Ahmed, A. and Elsinger, R.J. (1990) Gas chromatography as a development and production tool for fingerprints in oils from individual reservoirs: Application in the Gulf of Mexico. In GC-SSEPM Foundation Ninth Annual Research Conference Proceedings, October 1, 1990., p.263-282.
  23. KNOC (2010): Interpretation of core sample analysis of carbonate bitumen from CRC in Canada. Techn. Consult. Report of KNOC (consulted by KIGAM), p.109. (in Korean)
  24. Koster, J., Littke, L. and Machel, H.G. (2008) Devonian carbonates of the Nigel Peak Area, Rocky mountains, Canada: a fossil petroleum system? J. Petro. Geol., v.31, p.283-302. https://doi.org/10.1111/j.1747-5457.2008.00421.x
  25. Lafargue, E., Espitalie J., Marquis, F. and Pillot, D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil Gas Sci. Tech. Rev. IFP, v.53, p.421-437. https://doi.org/10.2516/ogst:1998036
  26. Lemay, T.G. (2002a) Sampling of groundwater from wells in the Athabasca oil sands (in-situ) area, Alberta, 1999-001. Alberta Energy and Utilities Board/Alberta Geological Survey, Geo-Note 2002-10 (CD-ROM).
  27. Lemay, T.G. (2002b) Sampling of formation water from wells in the Athabasca oil sands (in-situ) area, Alberta, 1999-001. Alberta Energy and Utilities Board/Alberta Geological Survey, Geo-Note 2002-11 (CD-ROM).
  28. Luo, P., Machel, H.G. and Shaw, J. (1994) Petrophysical properties of matrix blocks of a heterogeneous dolostone reservoir-the Upper Devonian Grosmont Formation, Alberta, Canada. Can. Petrol. Geol. Bull., v.42, p.465-481.
  29. Machel, H.G. and Huebscher, H. (2001) The Devonian Grosmont heavy oil reservoir in Alberta, Canada. Zentra. Geol. Paleon. Teil 1, 2000, p.55-84.
  30. Miller, H. and Vandermeer, J. (1980) Grosmont-another energy giant for the future. Can. Soc. Petrol. Geol. Reser., v.7, p.1.
  31. Park, M.H., Kim, J.H., Lee, S.D., Choi, J.Y. and Kil, Y.W. (2010) Geochemical characteristics of Devonian Cairn Formation in Alberta, Canada. Econ. Environ. Geol., v.43, p.85-100 (in Korean with English abstract).
  32. Potter, I.J. (2007) Alberta Carbonates: Prime candidate for the 3rd Trillion and beyond. SPE 2007 Research & Development Conference, San Antonio, Texas, USA.
  33. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence. Springer, Berlin-Heidelberg, 538p.
  34. Trabelsi, K, Espitalie, J. and Huc, A.Y. (1994) Characterization of extra heavy oils and tar deposit by modified pyrolysis methods. European Symposium on Heavy Oil Technologies in a Wider Europe, Proceedings, June 7&8, p.30-40.
  35. Vandeginste, V., Swennen, R., Gleeson, S.A., Ellam, R.M., Osadetz, K. and Roure, F. (2006) Development of secondary porosity in the Fairholme carbonate complex (southwest Alberta, Canada). J. Geochem. Explo, v.89, p.394-397. https://doi.org/10.1016/j.gexplo.2005.11.088
  36. Vandeginste, V., Swennen, R., Gleeson, S.A., Ellam, R.M., Osadetz, K. and Roure, F. (2009) Thermochemical sulphate reduction in the Upper Devonian Cairn Formation of the Fairholme carbonate complex (South-West Alberta, Canadian Rockies): evidence from fluid inclusions and isotopic data. Sedimentology, v.56, p.439-460. https://doi.org/10.1111/j.1365-3091.2008.00978.x

Cited by

  1. Geochemical characterization of an organic-rich carbonate from the Grosmont Formation, Alberta, Canada vol.19, pp.2, 2015, https://doi.org/10.1007/s12303-015-0023-4
  2. Geochemical analyses on bituminous carbonate reservoir in Alberta, Canada: focusing on the GC/GC-MS results of bitumen vol.17, pp.2, 2013, https://doi.org/10.1007/s12303-013-0021-3
  3. Geochemical Characteristics of Devonian Bitumen Carbonates in Alberta, Canada vol.45, pp.4, 2012, https://doi.org/10.9719/EEG.2012.45.4.365
  4. Biodegradation characteristics of bitumen from the Upper Devonian carbonates (Grosmont and Nisku formations) in Alberta, Canada vol.22, pp.5, 2018, https://doi.org/10.1007/s12303-018-0021-4
  5. Analysis on the SAGD Simulation Using Characteristic Variable of Fracture System in Fractured Carbonate Reservoirs vol.54, pp.5, 2017, https://doi.org/10.12972/ksmer.2017.54.5.521