DOI QR코드

DOI QR Code

Investigation on Natural Radioactivity of Environmental Samples Near the Phosphate Rock Processing Facility

인광석 사용업체 주변 환경시료의 자연방사능 조사

  • Lee, Gill-Jae (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Koh, Sang-Mo (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Byung-Uck (Radiation Research Department, Safety Research Division, Korea Institute of Nuclear Safety) ;
  • Kim, Tong-Kwon (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Young-Ug (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이길재 (한국지질자원연구원 광물자원연구본부) ;
  • 고상모 (한국지질자원연구원 광물자원연구본부) ;
  • 장병욱 (한국원자력안전기술원 안전연구부) ;
  • 김통권 (한국지질자원연구원 광물자원연구본부) ;
  • 김용욱 (한국지질자원연구원 광물자원연구본부)
  • Received : 2010.11.29
  • Accepted : 2011.01.13
  • Published : 2011.02.28

Abstract

Some industrial minerals used in domestic industries such as monazite, apatite, bauxite, and ilmenite belong to NORM (Naturally Occurring Radioactive Materials) because they show a high radioactivity. Products, semi-products, wastes, and by-products which show higher radioactivity than NORM belong to TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials). Apatite used for manufacturing phosphate fertilizer in Namhae Chemical company belongs to NORM, and its by-product, phospo-gypsum, belongs to TENORM. A geological investigation is needed for the future environmental impact assessment of the Namhae Chemical company's site. According to survey results of the Namhae Chemical company's site, soil mineral composition indicated the mixture of minerals derived from the country rock (quartz, feldspar, mica, $l4{\AA}$ mineral, kaolin and amphibole) and minerals from the gypsum open-air storage yard (gypsum and apatite). Soil samples showed average content of U 4.6 ppm and Th 10 ppm, which are similar to average crustal abundances. They also show average contents of $^{40}K$ 191-1,166 Bq/kg, $^{226}Ra$ 15.6-710 Bq/kg, and $^{232}Th$ 17.4-72.7 Bq/kg, which indicate moderate levels of radio nuclide. But $^{226}Ra$ anomaly in the gypsum open storage yard is clearly confirmed and $^{232}Th$ anomaly is also confirmed in the east road side of the factory and nearby mountain areas. Soil external hazard indices ranged 0.24-2.01 with the average 0.54. Although most external hazard indices were lower than 1, which means radiation hazard index to be negligible, 5 samples out of total 40 samples showed higher values than 1, and further detailed investigation is needed.

국내에서 유통되는 산업원료물질 중 모나자이트, 인회석, 저어콘, 보오크사이트, 티탄철석 등은 천연방사성핵종을 함유한 원료광물로서 '자연기원방사성물질 (NORM)'에 속한다. 이러한 원료광물을 사용하여 제조된 제품, 반제품, 부산물 또는 폐기물이 원료광물보다 천연방사성핵종의 농도가 증가된 물질은 '인위적으로 농축된 자연기원방사성물질 (TENORM)'로 분류한다. 인산비료를 제조하는 남해화학(주)에서 사용하는 인회석은 NORM에. 부산물로 생산되는 인산석고는 TENORM에 해당된다. 이와 같은 NORM을 대량 사용하는 사용시설인 남해화학(주) 내부 및 주변 지역 지질환경에 대한 영향평가가 필요하다. 이러한 배경에서 이 공장 내부 및 주변 지역의 지질특성, 토양에 대한 광물학적 및 지화학적 분석을 수행하여 향후 관리를 위한 과학적인 기초자료를 제공하고자 한다. 남해화학(주) 공장 내부 및 인근 지역 토양의 광물조성은 석영, 장석, 운모, $14{\AA}$광물, 고령토, 각섬석 등 모암으로부터 유래된 광물조성과 석고, 인회석 등 석고 야적장에서 유래된 광물조성으로 혼화되어 있다. 이 지역 토양의 평균 U 함량은 4.6 ppm, Th 함량은 10 ppm으로서 지각의 평균 함량과 거의 유사하다. 토양의 $^{40}K$의 농도는 191-1,166 Bq/kg, $^{226}Ra$의 농도는 15.6-710 Bq/kg이고 $^{232}Th$의 농도는 17.4-72.7 Bq/kg으로서 극히 높은 핵종 농도는 보이지 않으나 상대적으로 높은 $^{226}Ra$ 농도는 인산석고 적재장에서 뚜렷이 확인되며 $^{232}Th$ 농도가 높은 지점은 공장 동편 도로변 및 산체에서 잘 확인된다. 토양시료의 외부위해지수 범위는 0.24-2.01이며 평균 0.54로서 전체적으로는 위해 기준치로 제시되는 1.0 이하이지만 일부 지점에서는 1.0 이상이다.

Keywords

Acknowledgement

Grant : 원자력연구개발사업

Supported by : 한국원자력안전기술원

References

  1. Beretka, J. and Mathew, P.J. (1985) Natural radioactivity of Australian building materials, industrial wastes, and by-products. Health Physics 48, 87-95. https://doi.org/10.1097/00004032-198501000-00007
  2. European Commission (1999) European Commission report on radiological protection principles concerning the natural radioactivity of building materials. Radiation Protection 112.
  3. Chang, B.W. (2007) Current Status of NORM/TENORM, The 6th Syposium on Radiation Safety
  4. Chang, B.W. (2008) Radiation and Minerals IV ''Current Status of TENORM'', Minerals and Industry 21(2), p.82-97.
  5. Chang, B.W. (2009) Influx of NORM in the Recycling Scrap Metal and Necessity of Safety Supervision at the Origin. Progress of Safety Supervision Workshop for Recycling Scrap Metal Contaminated by Radioactive.
  6. Chang, K.H., Lee, Y.G. and Kim, K.H. (1989) Geological Report of the Namhae-Sosang 1:50,000 Sheet.
  7. Goldschmidt, V.M. (1937) The principles of distribution of chemical elements in minerals and rocks. J. Chem. Soc. London, March, 655-673.
  8. International Atomic Energy Agency (2004) Application of the concepts of exclusion, exemption, and clearance. Safety Standards Series, Safety Guideline No. RS-G-1.7.
  9. Koh, S.M., Kim, J.W., Yoon, Y.Y., Lee, K.Y., Yoo, J.H., Kim, Y.U., Lee, H.Y., Kim, D.H., Cho, S.Y. and Song, M.S. (2007) Survey on the natural and artificial radioactivity of industrial raw materials. Korea Institute of Nuclear Safety, KINS/HR-787.
  10. Koh, S.M., Yoo, J.H., Kim, Y.U., Ryoo, C.R., Kim, D.H., Kim, J.W. and Lee, H.J. (2008) Investigation on the natural radioactive industrial materials. Korea Institute of Nuclear Safety, KINS/HR-858.
  11. MKE and KIGAM (2009) Korea Mineral Information 2008.
  12. Park, H.I., Park, Y.A. and Jeong, J.G. (1989) Geological Report of the Kwangyang 1:50,000 Sheet.
  13. Vinogradov, A.P. (1962) Average content of chemical elements in the major types of igneous rocks of the earth's crust. Geochemistry, 7, 641-664.

Cited by

  1. The Transport Characteristics of 238U, 232Th, 226Ra, and 40K in the Production Cycle of Phosphate Rock vol.42, pp.1, 2017, https://doi.org/10.14407/jrpr.2017.42.1.33