• Title/Summary/Keyword: Device to Device (D2D)

Search Result 1,734, Processing Time 0.037 seconds

Analysis of dynamics characteristics of water injection pump through the 2D finite element (2D 유한요소 해석을 통한 Water injection pump의 동특성 분석)

  • LEE, JONG-MYEONG;KIM, YONG-HWI;KIM, JUN-HO;CHOI, HYEON-CHEOL;CHOI, BYEONG KEUN
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.408-414
    • /
    • 2014
  • After drilling operations at the offshore plant to production to crude oil to high pressure. After that time the low pressured of pipe inside when the secondary produce so oil recovery is reduced. At that time injection sea water at the pipe inside through water injection pump that the device Increase recovery so to be research and development at many industry. So developing 3-stage water injection pump at the domestic company. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic. In this paper, a 2D finite element analysis is performed through the dynamics of the present study was the validation of the model.

  • PDF

Nonvolatile Ferroelectric Memory Devices Based on Black Phosphorus Nanosheet Field-Effect Transistors

  • Lee, Hyo-Seon;Lee, Yun-Jae;Ham, So-Ra;Lee, Yeong-Taek;Hwang, Do-Gyeong;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.2-281.2
    • /
    • 2016
  • Two-dimensional van der Waals (2D vdWs) materials have been extensively studied for future electronics and materials sciences due to their unique properties. Among them, black phosphorous (BP) has shown infinite potential for various device applications because of its high mobility and direct narrow band gap (~0.3 eV). In this work, we demonstrate a few-nm thick BP-based nonvolatile memory devices with an well-known poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] ferroelectric polymer gate insulator. Our BP ferroelectric memory devices show the highest linear mobility value of $1159cm^2/Vs$ with a $10^3$ on/off current ratio in our knowledge. Moreover, we successfully fabricate the ferroelectric complementary metal-oxide-semiconductor (CMOS) memory inverter circuits, combined with an n-type $MoS_2$ nanosheet transistor. Our memory CMOS inverter circuits show clear memory properties with a high output voltage memory efficiency of 95%. We thus conclude that the results of our ferroelectric memory devices exhibit promising perspectives for the future of 2D nanoelectronics and material science. More and advanced details will be discussed in the meeting.

  • PDF

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.

High Performance Wilkinson Power Divider Using Integrated Passive Technology on SI-GaAs Substrate

  • Wang, Cong;Qian, Cheng;Li, De-Zhong;Huang, Wen-Cheng;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.129-133
    • /
    • 2008
  • An integrated passive device(IPD) technology by semi-insulating(SI)-GaAs-based fabrication has been developed to meet the ever increasing needs of size and cost reduction in wireless applications. This technology includes reliable NiCr thin film resistor, thick plated Cu/Au metal process to reduce resistive loss, high breakdown voltage metal-insulator-metal(MIM) capacitor due to a thinner dielectric thickness, lowest parasitic effect by multi air-bridged metal layers, air-bridges for inductor underpass and capacitor pick-up, and low chip cost by only 6 process layers. This paper presents the Wilkinson power divider with excellent performance for digital cellular system(DCS). The insertion loss of this power divider is - 0.43 dB and the port isolation greater than - 22 dB over the entire band. Return loss in input and output ports are - 23.4 dB and - 25.4 dB, respectively. The Wilkinson power divider based on SI-GaAs substrates is designed within die size of $1.42\;mm^2$.

Design of an Active Inductor-Based T/R Switch in 0.13 μm CMOS Technology for 2.4 GHz RF Transceivers

  • Bhuiyan, Mohammad Arif Sobhan;Reaz, Mamun Bin Ibne;Badal, Md. Torikul Islam;Mukit, Md. Abdul;Kamal, Noorfazila
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.261-269
    • /
    • 2016
  • A high-performance transmit/receive (T/R) switch is essential for every radio-frequency (RF) device. This paper proposes a T/R switch that is designed in the CEDEC 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology for 2.4 GHz ISM-band RF applications. The switch exhibits a 1 dB insertion loss, a 28.6 dB isolation, and a 35.8 dBm power-handling capacity in the transmit mode; meanwhile, for the 1.8 V/0 V control voltages, a 1.1 dB insertion loss and a 19.4 dB isolation were exhibited with an extremely-low power dissipation of 377.14 μW in the receive mode. Besides, the variations of the insertion loss and the isolation of the switch for a temperature change from - 25℃ to 125℃ are 0.019 dB and 0.095 dB, respectively. To obtain a lucrative performance, an active inductor-based resonant circuit, body floating, a transistor W/L optimization, and an isolated CMOS structure were adopted for the switch design. Further, due to the avoidance of bulky inductors and capacitors, a very small chip size of 0.0207 mm2 that is the lowest-ever reported chip area for this frequency band was achieved.

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

Method to Use the Augmented Reality for Construction Planning and Management

  • Nam, Keong-Woo;Kang, Chulung;Jang, Myunghoun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1067-1074
    • /
    • 2022
  • An architect creates his/her design to meet owner's requirements. Floor plans, perspective drawings, and scale models are used in order for the owner to choose the design. The tools are a little helpful for communication between the architect and the owner in case the owner does not know architecture. The scale models are good, but it is hard to make scale models while design is in progress. 3D CAD is a good tool for communication, but it is time-consuming and requires high-performance computer hardware. Augmented reality is able to show 3D virtual models that are updated by the architect with smart devices such as a smart phone and a tablet PC. The owner frequently reviews the updated design anytime anywhere. This study proposes a method to use augmented reality for architectural design and construction management. The method supports the communication between the owner, the architect and the contractor to review updated designs, and to complete the building project. 3D models expressed in augmented reality are created using SketchUp with 2D drawings for building construction. An Android application implementing augmented reality is developed by Qualcomm Vuforia and Unity on smart devices. Drawings as markers and 3D models are connected in Unity. And functions that temporarily hide unnecessary parts can be implemented in C# programming language. If an owner, an architect, or a contractor looks at a smart phone on a 2D drawing, he/she can identify building elements such as 3D buildings or columns on a screen. This can help communication between them.

  • PDF

Research on the characteristics of noise exposure on worker wearing acoustic devices (음향도구 착용 근로자의 소음노출 실태에 관한 연구)

  • Kim, Kab-Bae;Yoo, Kye-Mook;Lee, In-Seop;Chung, Kwang-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.808-813
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset Noise exposure measurements of 17 operators were performed in 7 call centers and Head and Torso Simulator method in compliance with the ISO Standard 11904-2 was used for the measurement of noise transmitted from the headset Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of Pearson Correlation Analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.

  • PDF

Research on the Characteristics and Measures of Noise Exposure on Worker Wearing Acoustic Devices (음향도구 착용 근로자의 소음노출 실태에 관한 연구)

  • Kim, Kab-Bae;Yoo, Kye-Mook;Lee, In-Seop;Chung, Kwang-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.615-621
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset. Noise exposure measurements of 17 operators were performed in 7 call centers and head and Torso simulator method in compliance with the ISO standard 11904-2 was used for the measurement of noise transmitted from the headset. Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of pearson correlation analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.

A Study on the Design of Integrated Speech Enhancement System for Hands-Free Mobile Radiotelephony in a Car

  • Park, Kyu-Sik;Oh, Sang-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.45-52
    • /
    • 1999
  • This paper presents the integrated speech enhancement system for hands-free mobile communication. The proposed integrated system incorporates both acoustic echo cancellation and engine noise reduction device to provide signal enhancement of desired speech signal from the echoed plus noisy environments. To implement the system, a delayless subband adaptive structure is used for acoustic echo cancellation operation. The NLMS based adaptive noise canceller then applied to the residual echo removed noisy signal to achieve the selective engine noise attenuation in dominant frequency component. Two sets of computer simulations are conducted to demonstrate the effectiveness of the system; one for the fixed acoustical environment condition, the other for the robustness of the system in which, more realistic situation, the acoustic transmission environment change. Simulation results confirm the system performance of 20-25dB ERLE in acoustic echo cancellation and 9-19 dB engine noise attenuation in dominant frequency component for both cases.

  • PDF