• Title/Summary/Keyword: Device to Device (D2D)

Search Result 1,734, Processing Time 0.051 seconds

DB set-up of the Year 2000 date problem for medical device (의료기기 Year2000 문제해결을 위한 데이터베이스 구축방안)

  • Kim, S.H.;Juh, R.H.;Lee, S.D.;Shin, T.S.;Kim, J.S.;Kim, S.H.;Huh, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.104-105
    • /
    • 1998
  • To minimize the Y2K (year 2000) date aware problem of medical devices, we are developing a database that keeps the data such as equipment type, specification, serial number, model number, acquisition date, vendor, manufacturer of the device as well as the names of departments that installed and that is currently responsible for the management of the medical device. The database also keeps the information as to whether the device awares the date, whether it is affected by the Y2K problem or not, how to solve the problem, reference home page address, and so on. The data was collected via internet search of the FDA web site and related of manufacturers homepages. To manage the Y2K problem effectively, the database should be updated regularly to include recent information.

  • PDF

Electrical and Optical Propeties of a UV-Sensitive CCD Imager

  • Kim, Man-Ho;Choi, Jae-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.518-524
    • /
    • 2007
  • This paper describes several improved characterizations of the EPIC CCD, which now has modified electrode and channel structures. From a 3-D numerical simulation of the device, its channel doping and potential distributions are then observed for the optimization of the charge transfer. A wavelength-dependence on the device structure is observed in terms of the reflectivity of the incident radiation. The optical properties of ultra-low energy levels, when using an open-electrode structure, are then considered to improve their quantum efficiency.

Multi-Valued Logic Device Technology; Overview, Status, and Its Future for Peta-Scale Information Density

  • Kim, Kyung Rok;Jeong, Jae Won;Choi, Young-Eun;Kim, Woo-Seok;Chang, Jiwon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2020
  • Complementary metal-oxide-semiconductor (CMOS) technology is now facing a power scaling limit to increase integration density. Since 1970s, multi-valued logic (MVL) has been considered as promising alternative to resolve power scaling challenge for increasing information density up to peta-scale level by reducing the system complexity. Over the past several decades, however, a power-scalable and mass-producible MVL technology has been absent so that MVL circuit and system implementation have been delayed. Recently, compact MVL device researches incorporating multiple-switching characteristics in a single device such as 2D heterojunction-based negative-differential resistance (NDR)/transconductance (NDT) devices and quantum-dot/superlattices-based constant intermediate current have been actively performed. Meanwhile, wafer-scale, energy-efficient and variation-tolerant ternary-CMOS (T-CMOS) technology has been demonstrated through commercial foundry. In this review paper, an overview for MVL development history including recent studies will be presented. Then, the status and its future research direction of MVL technology will be discussed focusing on the T-CMOS technology for peta-scale information processing in semiconductor chip.

Model House System Using Virtual Reality (가상현실을 활용한 모델하우스 시스템)

  • Kim, Seung geun;Kim, Dong hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.92-93
    • /
    • 2017
  • Before showing the real house, generally a broker shows the blue print of the house to a customer who looks for houes to reside. However, it is difficult to for the customer to realize the house in detail by the blue print. To solve this problem, meet develop model house system using the virtual reality technology. The develop system shows the blue print of the house in 3D on the android device and make it possible for the user to move in the house projected virtually by using controllers.

  • PDF

Design of Electromagnetic Force driving Actuator for Molded Case Circuit Breaker (배선용 차단기(MCCB) 구동용 전자석 조작기(EMFA) 설계)

  • Kim, Rae-Eun;Kang, Jong-Ho;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.29-31
    • /
    • 2008
  • Recent years have witnessed that the Korean government prompts the 'Power IT' enterprise to combine electric Power industry with information technology (IT). Especially, in a move to shore up the distribution automation system, the necessity for remote control of molded case circuit breaker (MCCB) is getting more and more important. In this paper, we aimed to propose a remote-controlled MCCB of which the driving device is substituted to electrical equipment for mechanical parts. Driving device of MCCB was designed with the Electromagnetic Force driving Actuator (EMFA). Electromagnetic force and dynamic characteristics of the designed EMFA are analyzed using 2-D finite element method (FEM).

  • PDF

A New Scaling Theory for the Effective Conducting Path Effect of Dual Material Surrounding Gate Nanoscale MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;Suguna, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.92-97
    • /
    • 2008
  • In this Paper, we present a scaling theory for dual material surrounding gate (DMSGTs) MOSFETs, which gives a guidance for the device design and maintaining a precise subthreshold factor for given device parameters. By studying the subthreshold conducting phenomenon of DMSGTs, the effective conductive path effect (ECPE) is employed to acquire the natural length to guide the design. With ECPE, the minimum channel potential is used to monitor the subthreshold behavior. The effect of ECPE on scaling factor significantly improves the subthreshold swing compared to conventional scaling rule. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

High-precision Micro-machining using Vibration Cutting (진동절삭을 이용한 고정도 미세가공)

  • Son, Seong-Min;Lim, Han-Seok;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.72-77
    • /
    • 1999
  • This paper presents 2-dimensional vibration cutting increases dynamic stiffness of tool support and improves the quality of machined surface in micro-machining. 2-dimensional vibration cutting is generated by two piezo actuators arranged orthogonally. A sine-type voltage is input to one actuator and a phase-shifted sine-type voltage is input the other. Then the vibration device actuates the tool in a 2-D elliptical motion with pulsed cutting force. It is a characteristic of 2-D vibration cutting that some negative thrust force occurs as the direction of friction on a tool rake surface is reversed. It helps not only chip flow smoothly and continuously but also cutting force be reduced. The quality of machined surface by 2-D vibration cutting depends on such parameters as vibration amplitude, frequency, cutting speed, depth of cut, etc. Compared to conventional cutting through tool path simulation and experiments under several conditions, the 2-D vibration cutting is verified to bring forth a great decrease of cutting forces, much better surface roughness and moreover much less burr.

  • PDF

Automated measurement and analysis of sidewall roughness using three-dimensional atomic force microscopy

  • Su‑Been Yoo;Seong‑Hun Yun;Ah‑Jin Jo;Sang‑Joon Cho;Haneol Cho;Jun‑Ho Lee;Byoung‑Woon Ahn
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.1.1-1.8
    • /
    • 2022
  • As semiconductor device architecture develops, from planar field-effect transistors (FET) to FinFET and gate-all-around (GAA), there is an increased need to measure 3D structure sidewalls precisely. Here, we present a 3-Dimensional Atomic Force Microscope (3D-AFM), a powerful 3D metrology tool to measure the sidewall roughness (SWR) of vertical and undercut structures. First, we measured three different dies repeatedly to calculate reproducibility in die level. Reproducible results were derived with a relative standard deviation under 2%. Second, we measured 13 different dies, including the center and edge of the wafer, to analyze SWR distribution in wafer level and reliable results were measured. All analysis was performed using a novel algorithm, including auto fattening, sidewall detection, and SWR calculation. In addition, SWR automatic analysis software was implemented to reduce analysis time and to provide standard analysis. The results suggest that our 3D-AFM, based on the tilted Z scanner, will enable an advanced methodology for automated 3D measurement and analysis.

Study of The Amorphous Selenium (a-Se) using 2-dimensional Device Simulator (2차원 소자 시뮬레이터를 이용한 비정질 셀레늄(a-Se) 분석)

  • Kim, Si-Hyoung;Kim, Chang-Man;Nam, Ki-Chang;Kim, Sang-Hee;Song, Kwang-Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.187-193
    • /
    • 2012
  • Digital X-ray image detector has been applied for medical and industrial fields. Photoconductors have been used to convert the X-ray energy to electrical signal on the direct digital X-ray image detector and amorphous selenium (a-Se) has been used as a photoconductor, normally. In this work, we use 2-dimensional device (2-D) simulator to study about physical phenomena in the a-Se, when we irradiate electromagnetic radiation (${\lambda}=486nm$) on the a-Se surface. We evaluate the electron-hole generation rate, electron-hole recombination rate, and electron/hole distribution in the a-Se using 2-D simulator. This simulator divides the device into triangle and calculates using interpolation method. This simulation method has been proposed for the first time and we expect that it will be applied for the development of digital X-ray image detector.