• Title/Summary/Keyword: Device to Device (D2D)

Search Result 1,734, Processing Time 0.032 seconds

Development of a 2-row Type Band Furrow Tiller for a Walking Cultivator (보행형 관리기 부착형 2조식 부분 중경제초기의 개발)

  • Kim, C.S.;Kim, K.D.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.223-229
    • /
    • 2007
  • This study was conducted to develop a 2 row type band furrow tiller for a walking cultivator. The tillage and weeding operations in the furrow of dry fields has been done manually or chemical herbicide has been applied. The application of herbicide induces soil pollution and manual operation requires heavy labor. This 2-row type implement was developed to substitute this manual operation and to minimize soil pollution. The developed implement was composed of power transmitting device, tilling device, frame and tail wheel. The max. plowing width and depth were 300mm and 180mm, respectively. The revolutions of the hexagonal shaft and the tillage shaft were $227{\sim}376rpm$ and $355{\sim}590rpm$, respectively. The adequate working speed was $0.50{\sim}0.83m/s$ and the field capacity was $0.17{\sim}0.28hr/10a$.

Lasing Characteristics of GaAs-Based 1300 nm Wavelength Region InAs Quantum Dot Laser Diode (GaAs 기반 1300 nm 파장대역 InAs 양자점 레이저 다이오드의 발진 특성)

  • Kim, K.W.;Choa, N.K.;Song, J.D.;Lee, J.I.;Park, Jeong-Ho;Lee, Y.J.;Choi, W.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.266-271
    • /
    • 2009
  • We have investigated the lasing characteristics of GaAs-based 1300 nm wavelength region InAs Quantum Dot Laser Diode grown by Migration Enhanced Molecular Beam Epitaxy. Under a pulsed and CW operation, we observed the state switching of lasing wavelength from ground state (1302 nm) to excited state (1206 nm) due to the gain saturation of ground state. Under a pulsed operation, $J_{th}=92A/cm^2$, $\lambda_L=1311\;nm$ and under a CW operation, $J_{th}=247A/cm^2$, $\lambda_L=1320\;nm$.

The optimum design of MQW Buried-RWG LD (MQW Buried RWG LD 최적화 설계)

  • 황상구;오수환;김정호;김운섭;김동욱;하홍춘;홍창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.312-319
    • /
    • 2001
  • We proposed a B-RWG LD (Buried-ridge waveguide laser diode) having more merits than a conventional RWG-LD. It's ridge width is controlled easily, it has the advantage of being more planar than the RWG-LD and it is possible to control refractive index with growth layer thickness. Before fabricating the device, we designed the optimal device for single mode, high efficiency and high power operation. From theoretical analysis, we have to control the $d_2, d_3$ layer thicknesses for lateral effective index difference, $\Delta_{nL}$ to be higher than critical value, and simultaneously consider the ridge width for single mode and low threshold current operation. As a result, it is possible to make a single mode LD having the ridge width of $6~9{\mu}m$ if the lateral effective index difference was controlled properly. perly.

  • PDF

A Novel LTE Handover Scheme through a Leading Device for Maintain D2D Communication (D2D 선행 단말을 이용한 LTE 핸드오버 지원방안)

  • Kang, Chan-Uk;Min, Sang-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.110-121
    • /
    • 2020
  • Since the number of user equipments has also increased rapidly, the problem of network load due to frequent handover of user equipments has occurred. As a solution to this we expect to be able to reduce network overload problems and the delay caused by handover using LTE-based D2D communication. In this paper, we proposed a proposal to support handover via a preceding user equipment using LTE-based D2D communication by handover method of existing LTE network. We proposed a method that can efficiently solve the handover situation of the user equipment via the preceding user equipment in order to reduce the overlapping signal used at the time of handover between the base station and the user equipment. The handover delay accompanying the change in the number of user equipments was able to confirm the result that the suggested scheme was reduced as compared with the existing LTE handover.

Implementation of 2.4 GHz Wireless Keyboard and Mouse Electromagnetic Signal Analysis and Manipulate Systems (2.4 GHz 무선 키보드/마우스 전자파 신호 분석 및 조작 시스템 구축)

  • Kim, Sang-Su;Oh, Seung-Sub;Na, In-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1075-1083
    • /
    • 2016
  • Nowadays, the use of wireless input devices has been increasing on the basis of high convenience and portability. In particular the most widely used wireless keyboard and the mouse to use the 2.4 GHz frequency band, but due to the third party receives the electromagnetic wave from leaking when the radio equipment it is easy to obtain the personal information and the vulnerability is also being reported consistently. In this paper, implement a system to analyze and manipulate the packets of 2.4 GHz wireless keyboard and mouse using USRP device and GNU Radio package for verify the vulnerability of 2.4 GHz wireless keyboard and mouse. Using the construction system has attained a equipment specific address and key information by analyzing the communication protocol and the packet structure of the device was proved that a user can operate the PC to send the random key from long distance.

Epitaxial Layer Design for High Performance GaAs pHEMT SPDT MMIC Switches

  • Oh, Jung-Hun;Mun, Jae-Kyoung;Rhee, Jin-Koo;Kim, Sam-Dong
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.342-344
    • /
    • 2009
  • From a hydrodynamic device simulation for the pseudomorphic high electron mobility transistors (pHEMTs), we observe an increase of maximum extrinsic transconductance and a decrease of source-drain capacitances. This gives rise to an enhancement of the switching speed and isolation characteristics as the upper-to-lower planar-doping ratios (UTLPDR) increase. On the basis of simulation results, we fabricate single-pole-double-throw transmitter/receiver monolithic microwave integrated circuit (MMIC) switches with the pHEMTs of two different UTLPDRs (4:1 and 1:2). The MMIC switch with a 4:1 UTLPDR shows about 2.9 dB higher isolation and approximately 2.5 times faster switching speed than those with a 1:2 UTLPDR.

  • PDF

Robust and Efficient 3D Model of an Electromagnetic Induction (EMI) Sensor

  • Antoun, Chafic Abu;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.325-330
    • /
    • 2014
  • Eddy current induction is used in a wide range of electronic devices, for example in detection sensors. Due to the advances in computer hardware and software, the need for 3D computation and system comprehension is a requirement to develop and optimize such devices nowadays. Pure theoretical models are mostly limited to special cases. On the other hand, the classical use of commercial Finite Element (FE) electromagnetic 3D models is not computationally efficient and lacks modeling flexibility or robustness. The proposed approach focuses on: (1) implementing theoretical formulations in 3D (FE) model of a detection device as well as (2) an automatic Volumetric Estimation Method (VEM) developed to selectively model the target finite elements. Due to these two approaches, this model is suitable for parametric studies and optimization of the number, location, shape, and size of PCB receivers in order to get the desired target discrimination information preserving high accuracy with tenfold reduction in computation time compared to commercial FE software.

2D Quantum Effect Analysis of Nanoscale Double-Gate MOSFET (이차원 양자 효과를 고려한 극미세 Double-Gate MOSFET)

  • Kim, Ji-Hyun;Son, Ae-Ri;Jeong, Na-Rae;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.15-22
    • /
    • 2008
  • The bulk-planer MOSFET has a scaling limitation due to the short channel effect (SCE). The Double-Gate MOSFET (DG-MOSFET) is a next generation device for nanoscale with excellent control of SCE. The quantum effect in lateral direction is important for subthreshold characteristics when the effective channel length of DG-MOSFET is less than 10nm, Also, ballistic transport is setting important. This study shows modeling and design issues of nanoscale DG-MOSFET considering the 2D quantum effect and ballistic transport. We have optimized device characteristics of DG-MOSFET using a proper value of $t_{si}$ underlap and lateral doping gradient.

Fabrication and Characterization of High Luminance WOLED Using Single Host and Three Color Dopants (단일 호스트와 3색 도펀트를 이용한 고휘도 백색 유기발광다이오드 제작과 특성 평가)

  • Kim, Min Young;Lee, Jun Ho;Jang, Ji Geun
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.117-122
    • /
    • 2016
  • White organic light-emitting diodes with a structure of indium-tin-oxide [ITO]/N,N-diphenyl-N,N-bis-[4-(phenylm-tolvlamino)-phenyl]-biphenyl-4,4-diamine [DNTPD]/[2,3-f:2, 2-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile [HATCN]/1,1-bis(di-4-poly-aminophenyl) cyclo -hexane [TAPC]/emission layers doped with three color dopants/4,7-diphenyl-1,10-phenanthroline [Bphen]/$Cs_2CO_3$/Al were fabricated and evaluated. In the emission layer [EML], N,N-dicarbazolyl-3,5-benzene [mCP] was used as a single host and bis(2-phenyl quinolinato)-acetylacetonate iridium(III) [Ir(pq)2acac]/fac-tris(2-phenylpyridinato) iridium(III) $[Ir(ppy)_3]$/iridium(III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate [FIrpic] were used as red/green/blue dopants, respectively. The fabricated devices were divided into five types (D1, D2, D3, D4, D5) according to the structure of the emission layer. The electroluminescence spectra showed three peak emissions at the wavelengths of blue (472~473 nm), green (495~500 nm), and red (589~595 nm). Among the fabricated devices, the device of D1 doped in a mixed fashion with a single emission layer showed the highest values of luminance and quantum efficiency at the given voltage. However, the emission color of D1 was not pure white but orange, with Commission Internationale de L'Eclairage [CIE] coordinates of (x = 0.41~0.45, y = 0.41) depending on the applied voltages. On the other hand, device D5, with a double emission layer of $mCP:[Ir(pq)_2acac(3%)+Ir(ppy)_3(0.5%)]$/mCP:[FIrpic(10%)], showed a nearly pure white color with CIE coordinates of (x = 0.34~0.35, y = 0.35~0.37) under applied voltage in the range of 6~10 V. The luminance and quantum efficiency of D5 were $17,160cd/m^2$ and 3.8% at 10 V, respectively.

Bit-Rate Analysis of Various Symmetric ESQWs SEED under Optimized Input Power (최적 입사 광 전력 하에서의 대칭 ESQWs SEED의 비트 전송률 특성 분석)

  • Lim, Youn-Sup;Choi, Young-Wan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.66-79
    • /
    • 1999
  • We investigate the effects of high input power on the performance of optical bistable symmetric self-electooptic effect devices (S-SEEDs) using extremely shallow quantum wells (ESQWs). In this study, we consider the four ESQWs SEEDs; anti-reflection (AR)-coated ESQWs S-SEED, back-to-back AR coated ESQWs S-SEED, asymmetric F뮤교-Perot (AFP) ESQWs S-SEED, and back-to-back AFP-ESQWs S-SEED. As the input power increases, device performances such as on/off contrast ratio, on/off reflectivity difference are seriously degraded because of ohmic heating and exciton saturation. On the other hand, switching speed of the device increases up to certain value and then begins to decrease. With reasonable optimization of the input power for the best switching speed operation of the devices in a cascading optical interconnection system, we simulate and analyze the system bit-rate of the various ESQWs S-SEEDs, for a mesa of $5{\times}5{\mu}m^2$ size, changing the namber of quantum wells for the external bias of 0 V and -5V.

  • PDF