• Title/Summary/Keyword: Device reliability

Search Result 1,227, Processing Time 0.027 seconds

A Study on Reliability Characteristic Curve of Transmission & Substation System considering Device Fault's Uncertainty (설비고장의 불확실성을 고려한 송변전계통의 공급신뢰도 특성곡선에 관한 연구)

  • Jeon, Dong-Hoon;Kim, Kern-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1500-1506
    • /
    • 2008
  • In this paper, we proposed new reliability characteristic curve, which-can clearly show reliability property of transmission and substation system considering uncertainty such as frequency and duration of device fault. It express the relationship of duration of load curtailments, demand not supplied, and energy not served as “ y = $ax^{-1}$ " curve. and we proposed the method, which can objectively assess reliability of transmission and substation system using proposed characteristic curve as new reliability index. In this method, we used energy index of reliability(EIR) as a criterion of assessment. Finally, we performed a variety of case study for KEPCO system in order to verify usefulness of proposed method.

Effects of Plasma Treatment on the Reliability of a-IGZO TFT

  • Xin, Dongxu;Cui, Ziyang;Kim, Taeyong;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.85-89
    • /
    • 2021
  • High reliability thin film transistors are important factors for next-generation displays. The reliability of transparent a-IGZO semiconductors is being actively studied for display applications. A plasma treatment can fill the oxygen vacancies in the channel layer and the channel layer/insulating layer interface so that the device can work stably under a bias voltage. This paper studies the effect of plasma treatment on the performance of a-IGZO TFT devices. The influence of different plasma gases on the electrical parameters of device and its working reliability are reviewed. The article mentions argon, fluorine, hydrogen and several ways of processing in the atmosphere. Among these methods, F (fluorine) plasma treatment can maximize equipment reliability. It is expected that the presented results will form a basis for further research to improve the reliability of a-IGZO TFT.

High Efficiency Thin Film Photovoltaic Device and Technical Evolution for Silicon Thin Film and Cu (In,Ga)(Se,S)

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.88-88
    • /
    • 2012
  • High efficiency thin film photovoltaic device technology is reviewed. At present market situation, the industrial players of thin film technologies have to confront the great recession and need to change their market strategies and find technical alternatives again. Most recent technology trends and technical or industrial progress for Silicon thin film and CIGS are introduced and common interests for high efficiency and reliability are discussed.

  • PDF

Design and Research on High-Reliability HPEBB Used in Cascaded DSTATCOM

  • Yang, Kun;Wang, Yue;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.830-840
    • /
    • 2015
  • The H-bridge inverter is the fundamental power cell of the cascaded distribution static synchronous compensator (DSTATCOM). Thus, cell reliability is important to the compensation performance and stability of the overall system. The concept of the power electronics building block (PEBB) is an ideal solution for the power cell design. In this paper, an H-bridge inverter-based “plug and play” HPEBB is introduced into the main circuit and the controller to improve the compensation performance and reliability of the device. The section that discusses the main circuit primarily emphasizes the design of electrical parameters, physical structure, and thermal dissipation. The section that presents the controller part focuses on the principle of complex programmable logic device -based universal controller This section also analyzes typical reliability and anti-interference issues. The function and reliability of HPEBB are verified by experiments that are conducted on an HPEBB test-bed and on a 10 kV/± 10 Mvar DSTATCOM industrial prototype.

Development of an Integrated IoT System for Searching Dependable Device based on User Property (사용자 요소 기반의 신뢰성 있는 기기 탐색을 위한 사물인터넷 통합 시스템 개발)

  • Ryu, Shinhye;Kim, Sangwook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.791-799
    • /
    • 2017
  • With the development of the internet of things, sensor and device are can be applied to various scenario. Overall improving of the dependability index of internet of things is the ultimate goal. And reliability aims to increase the success rate of internet of things service delivery. Many studies about internet of things system have been made on the system to assess a dependability for providing reliable service to user, but it has difficult to reflect the user context for evaluating the device reliability. Also, most do not consider the availability of content information. In this paper, it proposed dependable device searching system in the internet of things environment. This system evaluates device dependability based on device status and measured data. Through the proposed system, it can be provided reliable context information for user-centric service.

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

The Effect of Abnormal Intermetallic Compounds Growth at Component on Board Level Mechanical Reliability (컴포넌트에서의 비정상적인 금속간화합물 성장이 보드 레벨 기계적 신뢰성에 미치는 영향)

  • Choi, Jae-Hoon;Ham, Hyon-Jeong;Hwang, Jae-Seon;Kim, Yong-Hyun;Lee, Dong-Chun;Moon, Jeom-Ju
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2008
  • In this paper, we studied how and why did abnormal IMC growth at component affect on board level mechanical reliability. First, interfacial reactions between Sn2.5Ag0.5Cu solder and electrolytic Ni/Au UBM of component side were investigated with reflow times and thermal aging time. Also, to compare mechanical reliability of component level, shear energy was evaluated using the ball shear test conducted with variation of shear tip speed. Finally, to evaluate mechanical reliability of board level, we surface-mounted component fabricated with each condition on PCB side. After conducting of 3 point bending test and impact test, we confirmed solder joint crack mode using cross-sectioning and dye & pry penetration method.

  • PDF

Case Study on Reliability Prediction of Barrier Type Pulse Separation Device using Stress-Strength Analysis (부하-강도 분석을 이용한 격막형 펄스분리장치의 내열강도에 대한 신뢰성 예측 사례연구)

  • Lee, Dong-Won;Jeong, Se-Yong;Lee, Bang-Eop;Jung, Gyoo-Dong;Park, Boo-Hee;An, Dong-Geun;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 2015
  • A stress-strength analysis is used to assess the reliability of a multi-pulse rocket motor system. Main stress is found to be thermal during explosion and the distribution is obtained by simulation. The strength distribution is derived from the results of actual specimen tests. The failure rate of barrier type pulse separation device is estimated.

A quantitative approach for reliability growth of electronics units (전자장비 신뢰도 향상을 위한 정량적 접근 연구)

  • Kim, Joo-Nyun;Kim, Bo-Gwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.268-274
    • /
    • 2007
  • In general, rocket or satellite circuit designers focus on reducing temperature of electronic devices in order to enhance electronic unit's reliability. This paper describes the quantitative analysis result of activation energy as well as device temperature effects to the system reliabilities. The quantitative analysis result shows that activation energy of device has more effects on system reliability than temperature does. And this paper suggests a strategy for enhancement of reliability during devices placement on PCB with simulation results.

Investigation of Mechanical Stability of Nanosheet FETs During Electro-Thermal Annealing (Nanosheet FETs에서의 효과적인 전열어닐링 수행을 위한 기계적 안정성에 대한 연구)

  • Wang, Dong-Hyun;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Reliability of CMOS has been severed under aggressive device scaling. Conventional technologies such as lightly doped drain (LDD) and forming gas annealing (FGA) have been applied for better device reliability, but further advances are modest. Alternatively, electro-thermal annealing (ETA) which utilizes Joule heat produced by electrodes in a MOSFET, has been newly introduced for gate dielectric curing. However, concerns about mechanical stability during the electro-thermal annealing, have not been discussed, yet. In this context, this paper demonstrates the mechanical stability of nanosheet FET during the electro-thermal annealing. The effect of mechanical stresses during the electro-thermal annealing was investigated with respect to device design parameters.