• 제목/요약/키워드: Device performance

검색결과 5,965건 처리시간 0.04초

Efficiency Improvement of Organic Solar Cells Using Two-step Annealing Technique

  • Masood, Bilal;Haider, Arsalan;Nawaz, Tehsin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권3호
    • /
    • pp.134-138
    • /
    • 2016
  • The fullerene solar cells are becoming a feasible choice due to the advanced developments in donor materials and improved fabrication techniques of devices. Recently, sufficient optimization and improvements in the processing techniques like incorporation of solvent vapor annealing (SVA) with additives in solvents has become a major cause of prominent improvements in the performance of organic solar cell-based devices . On the other hand, the challenge of reduced open circuit voltage (Voc) remains. This study presents an approach for significant performance improvement of overall device based on organic small molecular solar cells (SMSCs) by following a two step technique that comprises thermal annealing (TA) and SVA (abbreviated as SVA+TA). In case of exclusive use of SVA, reduction in Voc can be eliminated in an effective way. The characteristics of charge carriers can be determined by the measurement of transient photo-voltage (TPV) and transient photo-current (TPC) that determines the scope for improvement in the performance of device by two step annealing. The recovery of reduced Voc is linked with the necessary change in the dynamics of charge that lead to increased overall performance of device. Moreover, SVA and TA complement each other; therefore, two step annealing technique is an appropriate way to simultaneously improve the parameters such as Voc, fill factor (FF), short circuit current density (Jsc) and PCE of small molecular solar cells.

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권3호
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

Development of a Micromachined Differential Type Resonant Accelerometer and Its Performance

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung;Seok, Seon-Ho;Chun, Kuk-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2182-2186
    • /
    • 2003
  • This paper presents the differential type resonant accelerometer (DRXL) and its performance test results. The DRXL is the INS grade, surface micro-machined sensor. The proposed DRXL device produces a differential digital output upon an applied acceleration, and the principle is a gap-dependent electrical stiffness variation of the electrostatic resonator with torsion beam structures. Using this new operating concept, we designed, fabricated and tested the proposed device. The final device was fabricated by using the wafer level vacuum packaging process. To test the performance of the DRXL, a nonlinear self-oscillation loop is designed using describing function technique. The oscillation loop is implemented using discrete electronic elements. The performance test of the DRXL shows that the sensitivity of the accelerometer is 12 Hz/g and its long term bias stability is about $2mg(1{\sigma})$. The turn on repeatability, bandwidth, and dynamic range are 4.38 mg, 100 Hz, and ${\pm}\;70g$, respectively.

  • PDF

스피커를 이용한 400km/h급 고속철도 소음저감용 방음벽 상단장치의 음향성능 시험방법에 관한 연구 (A study on the acoustic performance test method using speaker of a noise reduction device for noise reduction of the 400km/h class high-speed railroad)

  • 윤제원;김영찬;장강석;엄기영;장승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.625-629
    • /
    • 2014
  • For the purpose of the acoustic performance evaluation of noise reduction device(NRD) installed at the top of noise barrier for further decreasing of noise level of 400km/h class high-speed railroad(HEMU), the acoustic performance test method using speaker instead of really running railway vehicle was suggested in this paper. For this, noise source location and frequency spectrum of HEMU was analyzed through the field noise test. These data were used for the determination of speaker's installation positions and frequency correction values applied to the speaker noise source. And, 400 meters long NRD was installed at the site where HEMU will be running at a speed of 400km/h. Finally, the outdoor speaker test with and without NRD showed that this NRD could decrease noise level even more than 3dB(A). In the future, the acoustic performance results of NRD conducted with speaker test will be compared with that of field test for HEMU running at a speed of 400km/h.

  • PDF

Gate-to-Drain Capacitance Dependent Model for Noise Performance Evaluation of InAlAs/InGaAs Double-gate HEMT

  • Bhattacharya, Monika;Jogi, Jyotika;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.331-341
    • /
    • 2013
  • In the present work, the effect of the gate-to-drain capacitance ($C_{gd}$) on the noise performance of a symmetric tied-gate $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ double-gate HEMT is studied using an accurate charge control based approach. An analytical expression for the gate-to-drain capacitance is obtained. In terms of the intrinsic noise sources and the admittance parameters ($Y_{11}$ and $Y_{21}$ which are obtained incorporating the effect of $C_{gd}$), the various noise performance parameters including the Minimum noise figure and the Minimum Noise Temperature are evaluated. The inclusion of gate-to-drain capacitance is observed to cause significant reduction in the Minimum Noise figure and Minimum Noise Temperature especially at low values of drain voltage, thereby, predicting better noise performance for the device.

다중 슬림형 감쇠장치의 개발 및 성능 실험 (Development of Multiple Slim Type Damper System and Performance Test)

  • 성은희;김다위;박두환;박관순;박장호;조해진
    • 한국안전학회지
    • /
    • 제29권2호
    • /
    • pp.31-37
    • /
    • 2014
  • For the vibration control of residential buildings, a multiple type slim damper system is developed and dynamic performance test is performed in this study. In conventional damping systems, larger installation space is required in order to achieve acceptable seismic performance, and as a result, it is difficult to determine efficient damping capacity of the device. The proposed damping device is composed of several small slim type dampers and linkage units. It can control damping capacity easily by changing the number of the small damper. To evaluate the proposed damping device, three slim type dampers (single-type, triple-type and penta-type) are designed and manufactured in real scale. Dynamic loading tests are performed by using the three manufactured dampers. From the tests, it is shown that damping coefficient is proportional to the number of the damper combined. Thus, test results validates the practicality of the proposed slim type dampers. applying nonlinear curve fitting technique, numerical model of the dampers are developed and presented.

공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교 (Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System)

  • 김도태;장중걸
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF

회전 원추형 마늘 쪽분리기 개발에 관한 연구 (III) - 최종기 설계 및 성능평가 - (Development of Rotating Cone Type Garlic Clove Separator (III) - Design and Performance Evaluation of Final Protype -)

  • 이종수;김기복
    • Journal of Biosystems Engineering
    • /
    • 제32권2호
    • /
    • pp.84-90
    • /
    • 2007
  • This study was conducted to design and manufacture a final prototype of garlic separator and to evaluate its performance. The performance of garlic separation was compared with manual separation. The final prototype for garlic separation consists of bucked-elevator device for automatic feed of garlic, rotating cone typed device, blower, and power transmission device. The optimal condition of outlet clearance was 19 mm and in this clearance, the proportions of fragment garlic separated in the large quality of Namdo garlic and all quality of Uiseong garlic were above 95% and above 85%, respectively. All proportion of damaged garlic was below 5% for all variety and quality. The garlic separation capacities of this developed machine were 310 kg/h for Namdo garlic and 293.6 kg/h for Uiseong garlic in the large quality. Capacities of final prototype compared with human being were $12.9{\sim}19.6$ times for Namdo and $24.2{\sim}31.7$ times Uiseong garlic, respectively.

엇갈림 휜을 갖는 전자기기의 열유동 모델링 및 휜 형상 최적 설계 (Thermal and Flow Modeling and Fin Structure Optimization of an Electrical Device with a Staggered Fin)

  • 김치원;이관수;여문수
    • 설비공학논문집
    • /
    • 제29권12호
    • /
    • pp.645-653
    • /
    • 2017
  • Thermal and flow modeling and fin structure optimization were performed to reduce the weight of an electrical device with a staggered fin. First, a numerical model for thermal and flow characteristics was suggested, and then, the model was verified experimentally. Using the verified model, improvement in cooling performance of the cooling system through the staggered fins was predicted. As a result, 87.5% of total heat generated was dissipated through the cooling fins, and a thermal island was observed in the rotor because of low velocity of the internal air flow through the air gap. In addition, it was confirmed that the staggered fin improves the cooling performance but it also increases the total pressure drop within the cooling system, by maximizing the leading edge effect. Based on this analysis result, the effect of each design parameter on the thermal and flow characteristics was analyzed to select the main optimal design parameters, and multi-objective optimization was performed by considering the cooling performance and the fin weight. In conclusion, the optimized fin structure improved the cooling performance by 7% and reduced the fin weight by 28% without any compromise of the pressure drop.