• Title/Summary/Keyword: Device fabrication

Search Result 1,417, Processing Time 0.032 seconds

Computer Simulation on Operating Characteristics of Nonvolatile SNOSFET Memory Devices (비휘발성 SNOSFET 기억소자의 동작특성에 관한 전산모사)

  • Kim, Joo-Yeon;Lee, Sang-Bae;Lee, Young-Hie;Seo, Kwang-Yell
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.14-17
    • /
    • 1992
  • To analyze Nonvolatile SNOSFET(polySilicon-Nitride-Oxide-Semiconductor Field Effect Transistor) memory device, two dimensional numerical computer simulation program was developed. The equation discretization was performed by the Finite difference method and the solution was derived by the Iteration method. The doping profile of n-channel device which was fabricated by 1Mbit CMOS process was observed. The electrical potential and the carrier concentration distribution to applied bias condition were observed in the inner of a device. As a result of the write and the erase to memory charge quantity, the threshold voltage shift is expected. Therefore, without device fabrication, the operating characteristics of the device was observed under various the processing and the operating condition.

  • PDF

The design and fabrication of photo sensor for CMOS image sensor (CMOS 영상 센서를 위한 광 센서의 설계 및 제작)

  • Shin, K.S.;Ju, B.K.;Lee, Y.H.;Paek, K.K.;Lee, Y.S.;Park, J.H.;Oh, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.956-958
    • /
    • 1999
  • We designed and fabricated p-type MOSFETs with floating gate in n-type well lesion and examined their photo characteristics. The fabricated MOBFETs showed a high photo-respsonse characteristics, indicating a possibility as a photo sensor. The structures of MOSFETs were changed as to the number of gate and channel. As the number of channel increased, the induced current by light source s increased. However, the effect of the number of gate was negligble on the photo-response characteristics of the device.

  • PDF

A Study on electrical characteristics of New type bulk LDMOS (새로운 Bulk type LDMOSFET의 전기적 특성에 대한 연구)

  • Chung, Doo-Yun;Kim, Jong-Jun;Lee, Jong-Ho;Park, Chun-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.170-173
    • /
    • 2003
  • In this paper, we proposed a new bulk LDMOS structure which can be used for RF application, and its fabrication steps were introduced. The simulated devices consist of three types: Bulk device, SLB(SOI Like Bulk), and SOI device. As a result of process and device simulation, we showed electrical characteristics, such as threshold voltage, subthreshold slope, DIBL(Drain Induced Barrier Lowering), off-state current, and breakdown voltage. In this simulation study, the lattice temperature model was adopted to see the device characteristics with lattice temperature during the operation. SLB device structure showed the best breakdown characteristics among the other structures. The breakdown voltage of SLB structure is about 9V, that of bulk is 7V, and that of SOI is 8V.

  • PDF

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • ;Lee, Jae-Hyeon;Choe, Sun-Hyeong;Im, Se-Yun;Lee, Jong-Un;Bae, Yun-Gyeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

A Study on Micro-Tip Fabrication by Plating and CMP (도금 및 CMP에 의한 Micro-Tip 제작 공정 연구)

  • Han, Myung-Soo;Park, Chang-Mo;Shin, Gwang-Soo;Ko, Hang-Ju;Kim, Doo-Gun;Hann, S-Wook;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Hyo-Jin;Kim, Jang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.152-152
    • /
    • 2009
  • We investigate micro-tip properties as Ni-Co plating and CMP processes for MEMS probe card and units. The micro-tip are fabricated by using Ni-Co plating machine, lapping machine, and chemo-mechanical polisher. In order to get high conductive and reliable micro-tip, we control Co contents and thickness by CMP speed. We have found that about 20-25% of Co contents are required and have to lapping speed of 30 rpm. Also, we investigate photolithography and Ni-Co plating processes conditions for the one-step and the three-step micro-tips.

  • PDF

Bi-directional Two Terminal Switching Device with Metal/P/N+or Metal/N/P+ Junction

  • Kil, Gyu-Hyun;Lee, Sung-Hyun;Yang, Hyung-Jun;Lee, Jung-Min;Song, Yun-Heub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.386-386
    • /
    • 2012
  • We studied a bilateral switching device for spin transfer torque (STT-MRAM) based on 3D device simulation. Metal/P/N+or Metal/N/P+ junction device with $30{\times}30nm2$ area which is composed of one side schottky junction at Metal/P/N+ and Metal/N/P+ provides sufficient bidirectional current flow to write data by a drain induced barrier lowering (DIBL). In this work, Junction device confirmed that write current is more than 30 uA at 2 V, It is also has high on-off ratio over 105 under read operation. Junction device has good process feasibility because metal material of junction device could have been replaced by bottom layer of MTJ. Therefore, additional process to fabricate two outer terminals is not need. so, it provides simple fabrication procedures. it is expected that Metal/P/N+ or Metal/N/P+ structure with one side schottky junction will be a promising switch device for beyond 30 nm STT-MRAM.

  • PDF

Fabrication of Flexible Thin Film Diode Devices for Plastics film LCO (플라스틱 필름 LCD용 연성 박막 다이오드 소자 제작)

  • 이찬재;홍성제;한정인;김원근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.218-221
    • /
    • 2002
  • We have successfully developed the high performance flexible thin film diode device for flexible plastic film LCD. For flexible LCD, TFD device must be normally operated under any deformation state. Two type devices, Ti/Ta$_2$O$\sub$5//Ta and Al/Ta$_2$O$\sub$5//Al were fabricated and the symmetry and reliability of those were estimated under various measurement conditions including severely bending states.

  • PDF

Overview of the Current Status of Technical Development for a Highly Scalable, High-Speed, Non-Volatile Phase-Change Memory

  • Lee, Su-Youn;Jeong, Jeung-Hyun;Cheong, Byung-Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • The present status of technical development of a highly scalable, high-speed non-volatile PCM is overviewed. Major technical challenges are described along with solutions that are being pursued in terms of innovative device structures and fabrication technologies, new phase change materials, and new memory schemes.

Fabrication of a Humidity Sensing Device using Silicon Thermopile (실리콘 Thermopile을 이용한 감습 소자의 제작)

  • 김태윤;주병권;오명환;박정호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.70-76
    • /
    • 1994
  • A humidity sensing device based on a new humidity sensing principle is designed and fabricated in this study. The silicon thermopile is consisted of 25 couples of p-type diffused layer/Al strips. The internal resistance and the Seebeck coefficient are 300kl and 537$\mu$V/K, respectively Fabricated sensors showed linear response characteristics proportional to relative humidity changes with a sensitivity of 9$\mu$V/%RH in the range from 20% to 90%.

  • PDF

Impact of Plasma Induced Degradation on Low Temperature Poly-Si CMOS TFTs during Etching Process

  • Chang, Jiun-Jye;Chen, Chih-Chiang;Chuang, Ching-Sang;Yeh, Yung-Hui
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.519-522
    • /
    • 2002
  • In this paper, we analyze the impact of plasma etching process induced device degradation on low temperature poly-Si TFTs. The results indicate the relationship between device degradation and PPID effect during plasma fabrication. The dual-gate structure, which is used to suppress leakage current, is also discussed in this research.

  • PDF