• Title/Summary/Keyword: Detonator

Search Result 89, Processing Time 0.028 seconds

A Case Study on Blasting Vibration 3D Modelling with Electronic-Delay System Detonator (전자발파시스템을 이용한 발파진동 3D 모델링 연구 사례)

  • Kim, Gab-Su;Yang, Ruilin;Kim, Yong-Gyun;Kang, Dae-Woo
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.131-142
    • /
    • 2014
  • This study is using electronic-delay system detonator which can input an accurate detonating delay, compare predicted blasting vibration level derived from vibration 3D modelling with real measured blasting vibrations, and then considered modelling results are able to apply blast design. It confirmed there are certain relations between modelling and real vibration data, so modelling prediction method also can be apply design various blast conditions and prediction equation of blast vibration.

Numerical Analysis of tunnel overbreak influenced by delay time accuracy of detonator (뇌관의 시차 정밀도가 터널 여굴에 미치는 영향 수치해석)

  • An, Bong-Do;Kang, Dae-Woo
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2009.03a
    • /
    • pp.73-82
    • /
    • 2009
  • In order to find that how differences of delay time accuracy of ms,ds detonator applied to tunnel contour influences overbreak in tunnel blasting, it was analyzed using common program(Itasca CG, 2004)which was developed by individual factor method called "Partical Flow Code 2D(PFC2D). In result, overbreak and damage of country rock were reduced when the delay was more accurate than the inaccurate.

  • PDF

A Study on the Combustion of the Ferrosilicon-Minium Delay Powders (지연화학의 연소에 관한 연구)

  • 김용욱;강원만
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1986
  • The results from a study on the combustion of the ferrosilicon-miniun delay powder which was examined under the various conditions are as follows. 1. It has been found that in case of these delay powders, decomposition of oxidiging agents occurs first and then reducing agents are oxidized by the gases evolved from the oxidizing agents and by the oxygen in air. Therefore, the main reactions are heterogenous reaction and especially He gas phase plays an important role in combustion reactions of delay Powders. 2. In case the loading pressure is below 100kg per a detonator, the dispresion of burning time is large. 3. Little or no increase in humidity was observed on daily measurement during six month preservation tests. 4. The amperage of electric current for igniting the fuse head has no effect on the burning time of delay conposition itself changed in the detonator.

  • PDF

Deformation of STS Cup for EFI Detonator in High Velocity Impact (탄두 충돌 시 기폭관 컵의 변형 해석)

  • Kim, Seok-Bong;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.430-434
    • /
    • 2013
  • In this paper, we have investigated deformation of cup for EFI detonator in high velocity impact test. The experimental result shows that STS cup deformed 0.170 mm with the bulged shape. The numerical simulation result with static/dynamic material properties of SUS304 shows 0.166 mm of deformation. The main parameters to decrease the deformation of cup are stength, thickness and density of cup. The initial condition of SUS304 cup was strength of 215 MPa and thickness of 0.12 mm. As strength increases to 500 MPa, deformation of cup converges to 0 mm, and as thickness increases to 0.18 mm, deformation of cup converges to 0 mm. If the density of cup decreases from 8 to 2.7 g/cc, the deformation of cup decreases to 0.141 mm.

The effect of delay time of nonelectric detonator on the level of vibration in surface blasting (노천발파에서 비전기식뇌관의 시간차가 진동의 크기에 미치는 영향)

  • 강추원
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.267-273
    • /
    • 1996
  • The types of eletric detonators manufactured in korea include instantaneous, decisecond and millisecond delays but number of delay intervals are only limited from No. 1 to No. 20 respectively. It is not sufficient to control accurately millisecond time with these detonators in large surface blasting. But nonelectric system detonators with an unlimited delay time are recently obtained. In this paper the effect of delay time of nonelectric detonator on the level of vibration in surface blasting was studied. A total of 169 data were recorded in the studied area. Blast point-to-measuring point distances ranged from 25 to 100 meter, where charge weight was 1.26 kg per delay.

  • PDF

A Safety Analysis of Electric Detonator for Stray Currents by Domestic Transmission Network System (국내 송전계통별 미주전류에 의한 전기뇌관의 안전성 분석)

  • Park Hyun-Sik;Kim Young-Seok;Kang Choo-Won
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.296-304
    • /
    • 2005
  • This study is to observe stray currents generated around the steel tower by domestic transmission network system and analysis stability of electric detonator. It is measured the stay current of each ten place at steel tower of 765 kV, 345 tV, 154 tV transmission line among domestic transmission network system. Stay currents measured a total of 40m at intervals of 4m toward a line direction and a line vertical direction centering around steel tower. Temperature of the surface, EC, water content also are measured. Although stay currents show the highest values, that is 12 percent of at 4m and less than 1 percent of 40m with Institute of Makers of Explosives(IME) regulations. It is shown correlation between stay currents and water content$\cdot$EC$\cdot$temperature of the surface. Stay currents measured at line direction and line vertical direction were little different and the shape of diminution was also shown a similar aspect.

A Study on the Estimation of Total Amounts of Blasted Rock by Detonator Volume used in the Blasting (뇌관당 파쇄암량을 고려한 발파작업수량 산정 연구)

  • 김민규;안명석
    • Explosives and Blasting
    • /
    • v.21 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • A large scale blasting is necessary for the construction or road, harbor or ground foundation of building and it is common that the blasting work is performed by a specialist subcontracted from the construction company who is originally responsible for the project. Sometimes the latter do not agree with the former in total amount of blasted rock. They try to find out real work amount as precisely as possible. The estimation is sometimes carried out by an entrusted person when it is impossible to come to an agreement with each other. There are several methods in estimating the blasted rock volume; a calculation by prescribed equivalents of explosive before construction, a calculation by specific charge per unit volume of rock, and a calculation by rock volume per detonator. In this study, the last method is reviewed and recommended as most reliable one.

Establishing a Standard Work Guideline for Safe Blasting (발파작업 표준 안전작업지침에 대한 개선안)

  • Kim, Hee-Do;Lee, Joon-Won
    • Explosives and Blasting
    • /
    • v.32 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The overall management for explosives in domestic and regulation for blasting is managed by the control Act of guns, sword, explosives etc. On the details for handling and method, delivery, storage, use and management for explosives and work safety for the accident prevention is recommended to the related business site through Standard safety work guideline of blasting which set by safety & health 27 Act handling. In this study, It reviews the standard safety work guideline of blasting notified by Ministry of employment & labor. We propose the new products introduced into domestic explosives market, definition of explosives word when the newest blasting technology is revised, emulsion explosives, bulk explosives and electronic detonators which increased in the latest. Indeed, We propose a typical handling method of non-electric detonator and electronic in order to make the renewed Standard safety work guideline of Blasting on work guideline.

A Case Study of GTX A Tunnel Station Blasting with Electronic Detonator (GTX A 터널정거장에 대한 전자뇌관 적용 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Seong, Yoo-Hyeon;Lee, Chang-Won
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.24-34
    • /
    • 2021
  • Electronic detonators are widely used in various construction sites due to accurate delay time. Including the cases with exceeded noise and vibration from site using electric/non-electric detonator, electronic detonators are used to improve blast fragmentation or to reduce the cost of secondary partial blasting. Furthermore, the number of cases using electronic detonators are increased for reduction of the cost and construction period by maximizing operations efficiency. This case study is about applying electronic detonators on large section station, tunnel construction site which is the part of urban area GTX A project. Although it was initially planned to utilize non-electric detonators, damage was inflicted on safety-thing. We have considered blasting method using electronic detonators as solution of this problem. By applying electronic detonators, we not only satisfied environmental regulations but also prevented nearby safety-thing from getting damaged. In addition, we were able to shorten the construction period than the initial plan by conducting single simultaneous blasting on large section station, in order to ensure safe and efficient construction.