• 제목/요약/키워드: Detonation Wave

검색결과 101건 처리시간 0.023초

초폭굉속도 램 가속기의 정상발진 및 불발과정의 수치적 연구 (Numerical Study of Regular Start and Unstart Process of Superdetonative Speed Ram Accelerator)

  • 문귀원;정인석;최정열
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.31-41
    • /
    • 2000
  • A numerical study was conducted to investigate the combustion phenomena of regular start and unstart processes based on ISL#s RAMAC 30 experiments with different diluent amounts in a ram accelerator. The initial projectile launching speed was 1800m/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with $5CO_2\;or\;4CO_2$. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1800m/s, as was found in the experiments using a steel-covered projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the regular start and unstart processes found in the experiments with an aluminum-covered projectile. The numerical results matched almost exactly to the experimental results. As a result, it was found that the regular start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

순산소와 미분탄 가스 연소에 의한 용융로 풍구 선단부 손상 모델링: 폭굉 압력파에 의한 영향 (Modeling of Damage Caused to Injectors Used in Pulverized-Coal-Oxygen-Combustion Furnace)

  • 곽민철;권기웅;이상호;여재익
    • 대한기계학회논문집B
    • /
    • 제34권11호
    • /
    • pp.957-964
    • /
    • 2010
  • 본 연구에서는 친환경 연소로서 순산소 연소의 내제한 문제점에 대하여 논의하고 있다. 그 중 DDT의 발전에 의해 발생되는 강한 압력 충격파에 의한 구조물의 손상에 대한 내용을 다루고 있다. 이를 위하여 DDT에 대해 인식시키기 위하여 기본적인 개념과 더불어 이를 발전시키는 요인들에 대해서 논의해 보았다. 그리고 순산소 연소의 DDT 발생에 의한 압력파 생성과 더불어 이에 따른 구조물 손상을 설명하기 위하여 순산소 연소를 사용하는 친환경 용융로(미분탄과 순산소 연소를 사용한 용융로) 내부의 풍구 손상을 AUTODYN hydrocode를 이용하여 모델링하였다. 이를 통하여 순산소 연소에 내제된 위험성에 대하여 살펴보았다.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

불연속체 동해석 기법을 이용한 발파진동 영향평가 (Assessment of Blast-induced Vibration Using Dynamic Distinct Element Analysis)

  • 박병기;전석원;박광준;도덕수;김태훈;정두섭
    • 한국소음진동공학회논문집
    • /
    • 제15권12호
    • /
    • pp.1389-1397
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced nitration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been increased recently in order to analyze the effect of the blast-Induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure corves estimated tv theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a dynamic distinct element analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast. Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced nitration and the stability of rock slope.

충격 전달에 의한 Gap Test의 폭굉 반응 해석 (A Study on Shock-induced Detonation in Gap Test)

  • 김보훈;강원규;장승교;박정수;여재익
    • 한국추진공학회지
    • /
    • 제20권2호
    • /
    • pp.75-85
    • /
    • 2016
  • 감쇠기를 사이에 두고 여폭약과 수폭약으로 충전된 파이로 착화기는 격벽의 압력 감쇠 현상과 고에너지 물질의 충격 점화 특성을 갖는다. 고폭약의 폭굉 반응 및 비반응 물질 통과에의 폭압 감쇠와 더불어 격벽의 형상 변화를 모사하기 위해서는 충격 전달에 의한 gap test의 폭굉 모델링이 필요하다. 본 연구에서는 오일러리안 레벨셋 기법이 적용된 다중물질 하이드로 코드를 사용하여 pentolite 작약과 열폭압 RDX의 폭발 반응 및 PMMA gap을 통과하는 충격파 전달을 해석함으로써 화약-격벽간 상호작용 및 임계 두께, 음향 임피던스, go/no-go 기폭 점화에 대한 특성을 정량화하였다.

Application of the Modified Reactive SPH Method for Simulating Explosions

  • ;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.922-925
    • /
    • 2011
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method widely used for the modeling fluid flows. Simulations of explosions require, besides the hydrodynamic equations, a realistic equation of state, an energy source term, and a set of chemical kinetic equations to follow the composition changes of the gas during the explosion. The performance of the hydrodynamic equations is investigated in the framework of the Sedov-Taylor blast-wave. The implementation of chemical kinetic equations and equation of state is studied with 1D detonation of TNT slab. Our results are compared to those from analytical and experimental studies.

  • PDF

유연성 선형 성형작약 개발에 관한 연구 (The Research on Development of Flexible Linear Shaped Charge)

  • 박병찬;장일호;이우진;전진철
    • 한국군사과학기술학회지
    • /
    • 제12권3호
    • /
    • pp.378-387
    • /
    • 2009
  • The shaped charge consists of the cast or pressed explosive and the metal liner. The pressure formed in detonation wave is so high that the liner is collapsed and the jet of high temperature, pressure and velocity is produced. The jet penetrates the target. In this paper, the simulation for optimization of flexible linear shaped charge(FLSC) was carried out by AUTODYNE program. Based on the results of simulation, we made a prototype of FLSC and evaluated penetration performance, flexibility and its application. The test result of prototype was compared with that of simulation.

W-Ti 분말 압축 (I) (Tungsten-Titanium Powder Compaction by Impulsive Loading (I))

  • Dal Sun Kim;S.Nemat-Nasser
    • 화약ㆍ발파
    • /
    • 제19권1호
    • /
    • pp.101-110
    • /
    • 2001
  • Depleted uranium (DU) outperforms tungsten heavy alloys (WHA) by about 10%. Because of environmental and hence, political concerns, there is a need to improve WHA performance, in order to replace the DU penetrators. A technique of metal powder compaction by the detonation of an explosive has been applied to tungsten-titanium(W-Ti) powder materials that otherwise may be difficult to fabricate conventionally or have dissimilar, nonequilibrium, or unique me1astab1e substructures. However, the engineering properties of compacted materials are not widely reported and are little known especially for the "unique" composition of W-Ti alloy. To develop high-performance tungsten composites with superior ballistic attributes, it is necessary to understand, carefully document controlled experimental results, and develop basic computational models for potential composites with controlled microstructures. A detailed understanding and engineering application of W-Ti alloy can lead to the development of new structural design for engineering components and materials.

  • PDF

최대 2 GPa 고압 환경에서 알루미늄 입자의 점화 특성 연구 (Aluminum particle ignition characteristics at high pressure condition up to 2 GPa)

  • 이경철;타이라 쯔바사;구군모;이재영;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.5-8
    • /
    • 2013
  • The ignition of aluminum particles under high pressure and temperature conditions is studied. The laser ablation method is used to generate aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave $CO_2$ laser is then used to heat surface of the aluminum target until ignition is achieved. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength. The radiant temperature is measured with respect to various pressures for tracing of required heating energy for ignition. Then the ignition temperature is deduced from the radiant temperature using the thermal diffusion equation. The established ignition criteria for corresponding temperature and pressure can be used in the modeling of detonation behavior of heavily aluminized high explosives or solid propellants.

  • PDF