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ABSTRACT

  Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method widely used for the modeling 

fluid flows. Simulations of explosions require, besides the hydrodynamic equations, a realistic 

equation of state, an energy source term, and a set of chemical kinetic equations to follow the 

composition changes of the gas during the explosion. The performance of the hydrodynamic 

equations is investigated in the framework of the Sedov-Taylor blast-wave. The implementation of 

chemical kinetic equations and equation of state is studied with 1D detonation of TNT slab. Our 

results are compared to those from analytical and experimental studies. 
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1. Introduction 

  The SPH method is a grid free Lagrangian 

based method in which the fluid flow is 

represented by fluid pseudo-particles. These 

individual particles interact with one other, 

moving with the flow and carrying with them 

all of the computational information about the 

fluid. Fluid properties are then interpolated 

between the particles. Although this technique 

was introduced by Lucy[1] and Monaghan[2] 

in the context of Astrophysical modeling, it 

was applied successfully applied for many 

engineering problems including simulations of 

high explosive (HE) detonation. The detonation 

speed is extremely high and the gaseous 

products can be assumed to be inviscid and 

the explosion process is adiabatic, In such case 

the Eulerian equations together with suitable 

equation of state (EOS) can be used 

  where ρ, e, p,  and t are density, internal 

energy, pressure, velocity and time, respective- 

ly.

  Kernel interpolation is the basis of the SPH

method. Any function  can be defined 

through its convolution with a kernel function

, , as follows 
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(3)

(8)

 (2)

where h is the smoothing length defining the

kernel influence domain,  is the mass 

associated with the interpolation point  . The 

kernel satisfies the following conditions

  In our work we use the spike kernel functi-

on defined as follows

(4)

where   is  ,   in one- and two- 

case, respectively. 

  According to the SPH approximation, the e-

quations (1) can be written as follows: 

(5)

where   accounts for the dissipation rate of 

internal energy due to the artificial viscosity.

We used a form of the viscosity based on

an analogy to the Riemann problem, which

can be written as 

(6)

where  is the speed of the sound for 

particle  ,   is the parameter order of unity.

  In order to keep the resolution of the 
method nearly constant, the smoothing length

is updating in accordance with the requireme-

nt that the mass influence domain should be

constant

(7)

where  is the number of dimensions. The 

initial value of   is typically set to    

where   is the initial particle spacing. 

  Equations (5-6) guarantee the preservation of

the linear and angular momentum which is o-

bvious advantage of the SPH.

2. Sedov blast wave

  This test demonstrates that the method can

handle the steep temperature and density gra-

dients created by an explosion. 

  A settled, uniform-density glass-liked distri-

bution of 72000 SPH particles is created. Then

the particles located within small area at the

origin are given a net impulse of thermal ene-

rgy    . The remaining particles have 

an internal energy 10
‐6 times smaller than the

particle with the maximum internal energy.

  We have deliberately chosen a large energy

jump for our Sedov blast in order to make th-

is test challenging. The impulse of thermal en-

ergy results in an outward propagating shock

front which sweeps the surrounding gas into a

dense layer. 

  In this particular case we can assume that t-

he gas is ideal, and so the pressure and speci-

fic internal energy are related by

where     is the ratio of specific heats. 

Sedov [5] provides an analytic similarity solut-

ion for the subsequent evolution of this syst-

m. Fig. 1 shows the results from the  Sedov 
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Table 1. EOS coefficients

Symbol Meaning Value
Initial density 1630 Kg/m3

Coefficient 3.7·1011 N/m2

Coefficient 3.2·109 N/m2

Coefficient 4.15
Coefficient 0.95
Coefficient 0.3

Detonation energy 4.29·106 J/Kg

blast  test at     for SPH and the analyti-

cal solution. The lower SPH peak density is 

not a surprise as the inherent smoothing of t-

he SPH method broadens the shock front and

lowers the maximum recoverable density. The

small oscillations of the particle velocities aro-

und the theoretically predicted is the consequ-

ence of the artificial viscosity implementation

and perhaps unavoidable for particle based c-

odes. 

3. Detonation of TNT slab

  The detonation of HE  is the propagation of

the reactive wave that advances through the 

explosive with constant detonation velocity rel-

ated to the particular explosive concerned. For

TNT the detonation velocity is  . 

Once initiated the intense heat and the pressu-

re developed are sufficient to maintain the de-

tonation process. In a steady state detonation 

process, the reaction rate is essentially infinite

and the chemical equilibrium is attained.

  For the explosive gas, the standard Jones-

Wilkins-Lee EOS is employed. The pressure of

the explosive gas is

(9)
  

  where    ,        are coef-

ficients obtained by fitting the experimental d-

ata. The values of these coefficients are listed

in Table 1. 

  One important benchmark in HE simulation

is a 1D TNT slab detonation [4], in which a

  long TNT slab detonates at one end of 

the TNT slab. In this case, a symmetric setup

can be employed when the detonation of the

  long slab from one end to the other e-

Fig.1 Results of the Sedov blast wave test at a 
time    . The black dots represent the 
SPH result and the red lines show the semi 
analytic solution provided by Sedov

 

nd is equivalent to the detonation of a   

long slab from the middle point to both ends.

According to the detonation velocity, it takes 

around   to complete the detonation to

the end of the slab.
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Fig. 2 Density, pressure and velocity profiles      

along the one dimensional TNT slab. 

The red lines indicate the experimental 

values for the peak values of the 

density, pressure and velocity at the 

trailing edge of the thin reaction zone

  Figure 2 show the density, velocity and the

pressure profiles along the slab at   interv-

al from 1 to   obtained using 2000 partic-

les. The solid red lines illustrate the experime-

ntal pressure, density, and the velocity at the 

trailing edge of the thin reaction zone.

  

  It can be seen from Fig. 2 that with the 

process of detonation the pressure and the pa-

rticle velocity converges to the experimental v-

alues, while density is slightly underestimated 

for the same reason discussed in the previous

section. However, the peak value of the densi-

ty tends to the experimental when the number 

of particles increases. Our results are in a go-

od agreement with those of other authors and

experimental data suggesting that the SPH can

be applied for the simulations of HE detonati-

on.
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