• Title/Summary/Keyword: Detention storage

Search Result 54, Processing Time 0.032 seconds

A Comparison and Analysis of Planning Models for the Design of Detention Pond in Urban Area (도시유역의 저류지 설계를 위한 계획모형 비교분석)

  • Lee, Jae-Joon;Kwak, Chang-Jae;Lee, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.105-115
    • /
    • 2008
  • Urbanization results in increased runoff volume and peak flowrate and shortening in time of concentration, which may cause frequent flooding downstream. There are various types of flow retardation methods including detention ponds, retention ponds, and infiltration ponds. In general, hydrologic models to design the detention pond are classified into planning model and design model. This study is comparing and analyzing of planning model to design the detention pond in urban area. Detention ponds data of Disaster Impact Assessment Report on 22 sites were analyzed to investigate proper planning models in this study. From this research, following conclusions are derived, 1) In case of on-line detention pond, Lee model(1991) is the best planning model and similar to real storage volume. 2) In case of off-line detention pond, Abt and Grigg model is much more proper model compared to other models.

Development of System for Sizing Flood Detention Storages (홍수 저류지 규모결정 시스템 개발)

  • Noh, Jae-Kyoung;Oh, Jin-Young;Yoo, Jae-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.884-888
    • /
    • 2006
  • A system was developed to size flood detention storages at the planned Dangjin residing district. Components of system is consisted of module for deriving relationship between elevation and storage, module for calculating sediment elevation, module for setting outflow sizes and elevations, module for reservoir flood routing, and module for ascertaining sizes of detention facilities. And a system was constructed with Visual Basic 6.0. Using this system, sizes of flood detentions are able to be determined very easily and rapidly only by pushing command buttons and by viewing results.

  • PDF

Analysis of Rainfall Runoff Reduction Effect Depending upon the Location of Detention Pond in Urban Area (도시유역 저류지 위치에 따른 우수유출저감효과 분석)

  • Lee, Jae Joon;Kim, Ho Nyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.535-546
    • /
    • 2008
  • Urbanization results in increased runoff volume and flowrate and shortening in time of concentration, which may cause frequent flooding downstream. The retardation structures are used to eliminate adverse downstream effects of urban stormwater runoff. There are various types of flow retardation measures include detention basin, retention basin, and infiltration basin. In this study, to present a rough standard about location of detention pond for attenuating peak flow of urban area, the runoff reduction effect is analyzed at outlet point when detention pond is located to upstream drainage than outlet. The runoff reduction effects are analyzed under the three assumed basins. These basins have longitudinal shape (SF = 0. 204), concentration shape (SF = 0. 782), and middle shape (SF = 0.567). Numerous variables in connection with the storage effect of detention pond and the runoff reduction effects are analyzed by changing the location of detention pond. To analyze runoff reduction effect by location of single detention pond, Dimensionless Upstream Area Ratio (DUAR) is changed to 20%, 40%, 60%, and 80% according to the basin shape. In case of multiple detention pond, DUAR is changed to 60%, 80%, 100%, 120%, and 140% only under the middle shape basin (SF = 0.567). Related figures and regression equations to determine the location of detention pond are obtained from above analysis of two cases in this study. These results can be used to determine the location of appropriate detention pond corresponding to the any runoff reduction such as storage ratio and peak flow ratio in urban watershed.

Design of Detention Pond and Critical Duration of Design Rainfall in Seoul

  • Lee, Jong-Tae;Yoon, Sei-Eui;Lee, Jae-Joon
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.33-43
    • /
    • 1994
  • This study is to determine the critical duration of design rainfall and to utilize it for the design of detention pond with pump station. To examine the effect of the duration and temporal distribytion of the design rainfall, Huff's quartile method is used for the 9 cases of durations (ranges from 20 to 240 minutes) with ten years return period, and the ILLUDAS model is used for runoff analysis. The storage ratio, which is the ratio of maximum storage amounts to total runoff volume, is introduced to determine the criticalduration of design rainfall. The duration which maximizes the storage ratio is adopted as the critical duration. This study is applied to 18 urban drainage watercheds with pump station in Seoul, of which the range of watershed area is 0.24~12.70$km^2$. The result of simulation shows that the duration which maximizes storage ratio is 30 and 60 minutes on the whole. It is also shown that the storage ratios of 2nd - and 3rd-quartile pattern are larger than those of 1st- and 4th-quartile pattern of temporal distribution. A simplified empirical formula for Seoul area is suggested by the regression analysis between the maximum storage ratio and the peak ratio. This formula can be utilized for the preliminary design and planning of detention pond with pump station.

  • PDF

A Study on the Application and Design Procedure of Multi-Purpose Wet Detention Ponds for Improving Water Quality - Case Study of NamAk New Town Development Area - (다목적 저류지의 수질개선을 위한 설계과정 및 적용에 관한 연구 - 남악 신도시 개발지를 대상으로 -)

  • Woo, Chang-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The disposal of stormwater is one of the major problems in urban water management. One method of reducing peak runoff rates and other detrimental impacts of stormwater is detention storage. Detention ponds as a water quality control alternatives have been investigated by a number of researchers. Recognizing multiple roles such as flood peak attenuation, pollution removal and aesthetic enhancement, the design and management of detentions ponds deserve more research. The purpose of this research is to establish design criteria wet detention ponds to improve water quality. Water quality in detention pond discharge might be improve with physical, chemical and biological alterations. Physical alteration was focused in this study. There are several methods for estimating the suspended solid control capability of wet detention ponds. Existing models of suspended solids removal are based on sedimentation and gravity settling theory. The pollutant trap efficiency of pond is a function of several interrelating factors. Detention time is the most important factor, because it determine gravity settling quantities of pollutants. Desirable modification of physical factors for improvement of water quality in wet detention ponds are volume ratio, area ratio, length to width ratio, depth, out let location, bottom soil type. In order to apply design procedure in actual site, Namak new town development area was selected.

A Study on Determination of Capacity for Pump and Detention Pond in Small Basins for Flood Control (소유역에서 홍수조절용 펌프 및 유수지 규모의 결정에 관한 연구)

  • Ahn, Tae-Jin;Park, Jong-Yoon;Lyu, Heui-Jeong;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.385-398
    • /
    • 2003
  • The concept of the effective storage ratio has been suggested to determine the size of detention pond by the previous researchers. The 11 pump - pond facilities in Dongdu-chun city were selected to analyze the critical duration for design rainfall and the storage ratio for each rainfall duration in this study It has been then found that the criteria of the maximum storage ratio is not reasonable for determining the size of detention pond because the difference of storage ratio with respect to each rainfall duration is too small. Moreover, since the size of pond compared with the pump capacity is not always big enough, the pump should be frequently operated, which may result in pump failure. Thus, the pond should be sufficiently sized to prevent the possibility of the pump failure due to frequent operation. According to the analyses for changing pump capacity, it has been found that if the function of the pond compared with the pump is concentrated, determining the size of pond based on the storage ratio is operationally feasible for even small basin. Thus, an improved procedure based on the storage ratio for determining the size of detention pond in small basin has been suggested. The results by the proposed procedure considering pump switching frequency may lead to reasonable pump operation. A simple linear programming model has been also adopted to figure out the relationship between pump capacity and pond size. It has been shown that the determination lot the size of detention pond based on conventional hydrologic flood routing in pond is feasible for only urban districts not rural areas.

Optimization of Detention Facilities by Using Multi-Objective Genetic Algorithms (다목적 유전자 알고리즘을 이용한 우수유출 저류지 최적화 방안)

  • Chung, Jae-Hak;Han, Kun-Yeun;Kim, Keuk-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1211-1218
    • /
    • 2008
  • This study is for design of the detention system distributed in a watershed by the Multi-Objective Genetic Algorithms(MOGAs). A new model is developed to determine optimal size and location of detention. The developed model has two primary interfaced components such as a rainfall runoff model to simulate water surface elevation(or flowrate) and MOGAs to get the optimal solution. The objective functions used in this model depend on the peak flow and storage of detention. With various constraints such as structural limitations, capacities of storage and operational targets. The developed model is applied at Gwanyang basin within Anyang watershed. The simulation results show the maximum outlet reduction is occurred at detention facilities located in upper reach of watershed in the peak discharge rates. It is also reviewed the simultaneous construction of an off-line detention and an on-line detention. The methodologies obtained from this study will be used to control the flood discharges and to reduce flood damage in urbanized watershed.

Quantification of Flood Reduction Effect of Small Stormwater Detention Facilities by NRCS Curve Number (유출곡선지수를 이용한 소규모 저류시설의 유출저감효과 정량화)

  • Yoo, Chul-Sang;Kim, Kyoung-Jun;Park, Min-Kyu;Yoon, Jeong-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.109-118
    • /
    • 2010
  • This study quantified the flood reduction effect of small stormwater detention facilities by the NRCS curve number. The modified rational equation was used to calculate the inflow volume into the detention facilities. The NRCS curve number in the cases w/ and w/o storage facility was calculated with respect to the rainfall characteristics(rainfall frequency, duration) and the size of storage facilities. Finally, diagrams showing the curve number reduction rate versus the size of storage facility were developed. The diagrams can be used to evaluate the flood reduction effect of storage facility reasonably and efficiently when estimating the optimal location and size of storage facility. The results based on the methodology propsed in this study were also compared with those of previous study for their validation.

Detention Orifice Design for Non-point Source Management Using SWMM (SWMM을 이용한 비점오염원 관리 저류지의 오리피스 설계기법 연구)

  • Cho, SeonJu;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.686-692
    • /
    • 2012
  • This study illustrates how to design and evaluate a non-point sources management detention pond using SWMM. In particular, special attention is given to the orifice design. In SWMM, orifice properties that need to be defined include its height above the bottom of the storage unit, its type, its geometry and its hydraulic properties. Among the various characteristics of orifice, the orifice hole size which is closely related to hydraulic retention time is focused in this study. Sensitivity analysis of orifice size in annual non-point sources reduction efficiency is carried out. In addition, a methodology which can be used to design a virtual junction in SWMM has been proposed to quantify water quality improvement triggered by the detention pond installation. As a result, it is recommended that a detention outlet should be designed to be about 2 to 3 days of hydraulic retention time.

The Analysis of Critical Duration of uncontrolled single detention facility in Small Catchment (소규모 유역에서 자연방류형 단일저류지의 임계지속기간 분석)

  • Park, Jong-Young;Shin, Chang-Dong;Lee, Jung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.17-28
    • /
    • 2005
  • The objective of this study is to evaluate the critical duration between detention facility and flood control facility of small size catchment. 4 small size catchments are applied for hydrological analysis and rainfall excess is computed by using the NRCS Runoff Curve Number method. The critical duration of detention facility and flood control facility is evaluated using the concept of allowable release rate. The conclusions studied in this study are as follows; (1) The type of temporal pattern of design rainfall which causes maximum storage ratio has resulted in Huff's 2 quartile in case of the use of the concept of allowable release rate. (2) Based on (1) of conclusion, the critical durations of flood control facility are similar to those of detention facility, which is used for uncontrolled single detention pond.