• Title/Summary/Keyword: Detection-by-tracking

Search Result 808, Processing Time 0.027 seconds

Measurement of the Biological Active Point using the Bio-electrical impedance analysis based on the Adaptive Frequency Tracking Filter (적응주파수추적필터기반의 생체임피던스분석을 통한 생물학적활성점측정에 관한 연구)

  • Park, Hodong;Lee, Kyoungjoung;Yeom, Hojun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.109-114
    • /
    • 2013
  • The biological active points (BAP) are known as low resistance spots or good electro-permeable points. In this paper, a new method for BAP detection using the bio-impedance measurement system based on the adaptive frequency tracking filter (AFTF) and the transition event detector is presented. Also, the microcontroller process continuous time demodulation of the modulated signal by multi frequency components using the AFTF. The transition event detector based on the phase space method is applied about each frequency using the BAP equivalent model which is proposed.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Location Estimation and Obstacle tracking using Laser Scanner for Indoor Mobile Robots (실내형 이동로봇을 위한 레이저 스캐너를 이용한 위치 인식과 장애물 추적)

  • Choi, Bae-Hoon;Kim, Beom-Seong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • This paper presents the method for location estimation with obstacle tracking method. A laser scanner is used to implement the system, and we assume that the map information is known. We matches the measurement of the laser scanner to estimate the location of the robot by using sequential monte carlo (SMC) method. After estimating the robot's location, the pose of obstacles are detected and tracked, hence, we can predict the collision risk of them. Finally, we present the experiment results to verify the proposed method.

Multiple Objection and Tracking based on Morphological Region Merging from Real-time Video Sequences (실시간 비디오 시퀀스로부터 형태학적 영역 병합에 기반 한 다중 객체 검출 및 추적)

  • Park Jong-Hyun;Baek Seung-Cheol;Toan Nguyen Dinh;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.40-50
    • /
    • 2007
  • In this paper, we propose an efficient method for detecting and tracking multiple moving objects based on morphological region merging from real-time video sequences. The proposed approach consists of adaptive threshold extraction, morphological region merging and detecting and tracking of objects. Firstly, input frame is separated into moving regions and static regions using the difference of images between two consecutive frames. Secondly, objects are segmented with a reference background image and adaptive threshold values, then, the segmentation result is refined by morphological region merge algorithm. Lastly, each object segmented in a previous step is assigned a consistent identification over time, based on its spatio-temporal information. The experimental results show that a proposed method is efficient and useful in terms of real-time multiple objects detecting and tracking.

A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment (증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법)

  • Lee, Seok-Han
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2010
  • This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.

Dynamic Rectangle Zone-based Collaboration Mechanism for Continuous Object Tracking in Wireless Sensor Networks (센서 네트워크에서 연속적인 개체 추적을 위한 동적 직사각형 영역 기반 협동 메커니즘)

  • Park, Bo-Mi;Lee, Eui-Sin;Kim, Tae-Hee;Park, Ho-Sung;Lee, Jeong-Cheol;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.591-595
    • /
    • 2009
  • Most existing routing protocols for object detection and tracking in wireless sensor networks concentrate on finding ways to detect and track one and more individual objects, e.g. people, animals, and vehicles, but they do not be interested in detecting and tracking of continuous objects, e.g., poison gas and biochemical. Such continuous objects have quite different properties from the individual objects since the continuous objects are continuously distributed across a region and usually occupy a large area, Thus, the continuous objects could be detected by a number of sensor nodes so that sensing data are redundant and highly correlated. Therefore, an efficient data collection and report scheme for collecting and locally aggregating sensing data is needed, In this paper, we propose the Continuous Object Tracking Mechanism based on Dynamic Rectangle Zone for detecting, tracking, and monitoring the continuous objects taking into account their properties.

A Robust Deep Learning based Human Tracking Framework in Crowded Environments (혼잡 환경에서 강인한 딥러닝 기반 인간 추적 프레임워크)

  • Oh, Kyungseok;Kim, Sunghyun;Kim, Jinseop;Lee, Seunghwan
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.336-344
    • /
    • 2021
  • This paper presents a robust deep learning-based human tracking framework in crowded environments. For practical human tracking applications, a target must be robustly tracked even in undetected or overcrowded situations. The proposed framework consists of two parts: robust deep learning-based human detection and tracking while recognizing the aforementioned situations. In the former part, target candidates are detected using Detectron2, which is one of the powerful deep learning tools, and their weights are computed and assigned. Subsequently, a candidate with the highest weight is extracted and is utilized to track the target human using a Kalman filter. If the bounding boxes of the extracted candidate and another candidate are overlapped, it is regarded as a crowded situation. In this situation, the center information of the extracted candidate is compensated using the state estimated prior to the crowded situation. When candidates are not detected from Detectron2, it means that the target is completely occluded and the next state of the target is estimated using the Kalman prediction step only. In two experiments, people wearing the same color clothes and having a similar height roam around the given place by overlapping one another. The average error of the proposed framework was measured and compared with one of the conventional approaches. In the error result, the proposed framework showed its robustness in the crowded environments.

Lane Detection Algorithm using Morphology and Color Information (형태학과 색상 정보를 이용한 차선 인식 알고리즘)

  • Bae, Chan-Su;Lee, Jong-Hwa;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.15-24
    • /
    • 2011
  • As increase awareness of intelligent vehicle systems, many kinds of lane detection algorithm have been proposed. General boundary extraction method can bring good result in detection of lane on the road. But a shadow on the road, or other boundaries, such as horizontal lines can be detected. The method using morphological operations was used to extract information about Lane. By applying HSV color model for color information of lane, the candidate of the lane can be extracted. In this paper, the lane detection region was set by Hough transformation using the candidate of the lane. By extracting lane markings on the lane detection region, lane detection method can bring good result.

Implementation and Evaluation of Multiple Target Algorithm for Automotive Radar Sensor (차량용 레이더 센서를 위한 다중 타겟 알고리즘의 구현과 평가)

  • Ryu, In-hwan;Won, In-Su;Kwon, Jang-Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.105-115
    • /
    • 2017
  • Conventional traffic detection sensors such as loop detectors and image sensors are expensive to install and maintain and require different detection algorithms depending on the night and day and have a disadvantage that the detection rate varies widely depending on the weather. On the other hand, the millimeter-wave radar is not affected by bad weather and can obtain constant detection performance regardless of day or night. In addition, there is no need for blocking trafficl for installation and maintenance, and multiple vehicles can be detected at the same time. In this study, a multi-target detection algorithm for a radar sensor with this advantage was devised / implemented by applying a conventional single target detection algorithm. We performed the evaluation and the meaningful results were obtained.

Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning (전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘)

  • Hong, Sunghoon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2021
  • The cause of the majority of vehicle accidents is a safety issue due to the driver's inattention, such as drowsy driving. A forward collision warning system (FCWS) can significantly reduce the number and severity of accidents by detecting the risk of collision with vehicles in front and providing an advanced warning signal to the driver. This paper describes a low power embedded system based FCWS for safety. The algorithm computes time to collision (TTC) through detection, tracking, distance calculation for the vehicle ahead and current vehicle speed information with a single camera. Additionally, in order to operate in real time even in a low-performance embedded system, an optimization technique in the program with high and low levels will be introduced. The system has been tested through the driving video of the vehicle in the embedded system. As a result of using the optimization technique, the execution time was about 170 times faster than that when using the previous non-optimized process.