• Title/Summary/Keyword: Detection characteristics

Search Result 3,434, Processing Time 0.031 seconds

Building Detection by Convolutional Neural Network with Infrared Image, LiDAR Data and Characteristic Information Fusion (적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지)

  • Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.635-644
    • /
    • 2020
  • Object recognition, detection and instance segmentation based on DL (Deep Learning) have being used in various practices, and mainly optical images are used as training data for DL models. The major objective of this paper is object segmentation and building detection by utilizing multimodal datasets as well as optical images for training Detectron2 model that is one of the improved R-CNN (Region-based Convolutional Neural Network). For the implementation, infrared aerial images, LiDAR data, and edges from the images, and Haralick features, that are representing statistical texture information, from LiDAR (Light Detection And Ranging) data were generated. The performance of the DL models depends on not only on the amount and characteristics of the training data, but also on the fusion method especially for the multimodal data. The results of segmenting objects and detecting buildings by applying hybrid fusion - which is a mixed method of early fusion and late fusion - results in a 32.65% improvement in building detection rate compared to training by optical image only. The experiments demonstrated complementary effect of the training multimodal data having unique characteristics and fusion strategy.

Application and Performance Analysis of Machine Learning for GPS Jamming Detection (GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석)

  • Jeong, Inhwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • As the damage caused by GPS jamming has been increased, researches for detecting and preventing GPS jamming is being actively studied. This paper deals with a GPS jamming detection method using multiple GPS receiving channels and three-types machine learning techniques. Proposed multiple GPS channels consist of commercial GPS receiver with no anti-jamming function, receiver with just anti-noise jamming function and receiver with anti-noise and anti-spoofing jamming function. This system enables user to identify the characteristics of the jamming signals by comparing the coordinates received at each receiver. In this paper, The five types of jamming signals with different signal characteristics were entered to the system and three kinds of machine learning methods(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree) were applied to perform jamming detection test. The results showed that the DT technique has the best performance with a detection rate of 96.9% when the single machine learning technique was applied. And it is confirmed that DT technique is more effective for GPS jamming detection than the binary classifier techniques because it has low ambiguity and simple hardware. It was also confirmed that SVM could be used only if additional solutions to ambiguity problem are applied.

The defect detection circuit of an electronic circuit through impedance change detection that induces a change in S-parameter (S-parameter의 변화를 유도하는 임피던스 변화 감지를 통한 전자회로의 결함검출회로)

  • Seo, Donghwan;Kang, Tae-yeob;Yoo, Jinho;Min, Joonki;Park, Changkun
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.689-696
    • /
    • 2021
  • In this paper, in order to apply Prognostics and Health Management(PHM) to an electronic system or circuit, a circuit capable of detecting and predicting defect characteristics inside the system or circuit is implemented, and the results are described. In the previous study, we demonstrated that the frequency of the amplitude of S-parameter changed as the circuit defect progressed. These characteristics were measured by network analyser. but in this study, even if the same defect detection method is used, a circuit is proposed to check the progress of the defect, the remaining time, and the occurrence of the defect without large measurement devices. The circuit is designed to detect the change in impedance that generates changes of S-parameter, and it is verified through simulation using the measurement results of Bond-wires.

Multi-type object detection-based de-identification technique for personal information protection (개인정보보호를 위한 다중 유형 객체 탐지 기반 비식별화 기법)

  • Ye-Seul Kil;Hyo-Jin Lee;Jung-Hwa Ryu;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.11-20
    • /
    • 2022
  • As the Internet and web technology develop around mobile devices, image data contains various types of sensitive information such as people, text, and space. In addition to these characteristics, as the use of SNS increases, the amount of damage caused by exposure and abuse of personal information online is increasing. However, research on de-identification technology based on multi-type object detection for personal information protection is insufficient. Therefore, this paper proposes an artificial intelligence model that detects and de-identifies multiple types of objects using existing single-type object detection models in parallel. Through cutmix, an image in which person and text objects exist together are created and composed of training data, and detection and de-identification of objects with different characteristics of person and text was performed. The proposed model achieves a precision of 0.724 and mAP@.5 of 0.745 when two objects are present at the same time. In addition, after de-identification, mAP@.5 was 0.224 for all objects, showing a decrease of 0.4 or more.

An Automatic Portscan Detection System with Adaptive Threshold Setting

  • Kim, Sang-Kon;Lee, Seung-Ho;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.74-85
    • /
    • 2010
  • For the purpose of compromising hosts, attackers including infected hosts initially perform a portscan using IP addresses in order to find vulnerable hosts. Considerable research related to portscan detection has been done and many algorithms have been proposed and implemented in the network intrusion detection system (NIDS). In order to distinguish portscanners from remote hosts, most portscan detection algorithms use a fixed threshold that is manually managed by the network manager. Because the threshold is a constant, even though the network environment or the characteristics of traffic can change, many false positives and false negatives are generated by NIDS. This reduces the efficiency of NIDS and imposes a high processing burden on a network management system (NMS). In this paper, in order to address this problem, we propose an automatic portscan detection system using an fast increase slow decrease (FISD) scheme, that will automatically and adaptively set the threshold based on statistical data for traffic during prior time periods. In particular, we focus on reducing false positives rather than false negatives, while the threshold is adaptively set within a range between minimum and maximum values. We also propose a new portscan detection algorithm, rate of increase in the number of failed connection request (RINF), which is much more suitable for our system and shows better performance than other existing algorithms. In terms of the implementation, we compare our scheme with other two simple threshold estimation methods for an adaptive threshold setting scheme. Also, we compare our detection algorithm with other three existing approaches for portscan detection using a real traffic trace. In summary, we show that FISD results in less false positives than other schemes and RINF can fast and accurately detect portscanners. We also show that the proposed system, including our scheme and algorithm, provides good performance in terms of the rate of false positives.

Multi Characters Detection Using Color Segmentation and LoG operator characteristics in Natural Scene (자연영상에서 컬러분할과 LoG연산특성을 이용한 다중 문자 검출에 관한 연구)

  • Shin, Seong;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.216-222
    • /
    • 2008
  • This paper proposed the multi characters detection algorithm using Color segmentation and the closing curve feature of LoG Operator in order to complement the demerit of the existing research which is weak in complexity of background, variety of light and disordered line and similarity of left and background color, etc. The proposed multi characters detection algorithm divided into three parts : The feature detection, characters format and characters detection Parts in order to be possible to apply to image of various feature. After preprocess that the new multi characters detection algorithm that proposed in this paper used wavelet, morphology, hough transform which is the synthesis logical model in order to raise detection rate by acquiring the non-perfection characters as well as the perfection characters with processing OR operation after processing each color area by AND operation sequentially. And the proposal algorithm is simulated with natural images which include natural character area regardless of size, resolution and slant and so on of image. And the proposal algorithm in this paper is confirmed to an excellent detection rate by compared with the conventional detection algorithm in same image.

A Study on the Formation of Detection Electrode for the IED Removal Robot by Using A Photosensitive CNT Paste (감광성 CNT 페이스트를 이용한 IED 폭발물 제거로봇 탐지전극 형성에 관한 연구)

  • Kwon, Hye Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.231-237
    • /
    • 2018
  • In this study, two important requirements for the home production of a robot to detect and remove improvised explosive devices (IEDs) are presented in terms of the total cost for robot system development and the performance improvement of the mine detection technology. Firstly, cost analyses were performed in order to provide a reasonable solution following an engineering estimate method. As a result, the total cost for a mass production system without the mine detection system was estimated to be approximately 396 million won. For the case including the mine detection system, the total cost was estimated to be approximately 411 million won, in which labor costs and overhead charges were slightly increased and the material costs for the mine detection system were negligible. Secondly, a method for fabricating the carbon nanotube (CNT) based gas detection sensor was studied. The detection electrodes were formed by a photolithography process using a photosensitive CNT paste. As a result, this method was shown to be a scalable and expandable technology for producing excellent mine detection sensors. In particular, it was found that surface treatments by using adhesive taping or ion beam bombardment methods are effective for exposing the CNTs to the ambient air environment. Fowler-Nordheim (F-N) plots were obtained from the electron-emission characteristics of the surface treated CNT paste. The F-N plot suggests that sufficient electrons are available for transport between CNT surfaces and chemical molecules, which will make an effective chemiresistive sensor for the advanced IED detection system.

A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique (정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구)

  • Kim, Su-jeong;Ha, Ji-hee;Oh, Soo-hyun;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2019
  • Malware infringement attacks are continuously increasing in various environments such as mobile, IOT, windows and mac due to the emergence of new and variant malware, and signature-based countermeasures have limitations in detection of malware. In addition, analytical performance is deteriorating due to obfuscation, packing, and anti-VM technique. In this paper, we propose a system that can detect malware based on machine learning by using similarity hashing-based pattern detection technique and static analysis after file classification according to packing. This enables more efficient detection because it utilizes both pattern-based detection, which is well-known malware detection, and machine learning-based detection technology, which is advantageous for detecting new and variant malware. The results of this study were obtained by detecting accuracy of 95.79% or more for benign sample files and malware sample files provided by the AI-based malware detection track of the Information Security R&D Data Challenge 2018 competition. In the future, it is expected that it will be possible to build a system that improves detection performance by applying a feature vector and a detection method to the characteristics of a packed file.