• Title/Summary/Keyword: Detection and Classification

Search Result 1,925, Processing Time 0.03 seconds

A Comparative Study on Deep Learning Models for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

SMD Detection and Classification Using YOLO Network Based on Robust Data Preprocessing and Augmentation Techniques

  • NDAYISHIMIYE, Fabrice;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • The process of inspecting SMDs on the PCB boards improves the product quality, performance and reduces frequent issues in this field. However, undesirable scenarios such as assembly failure and device breakdown can occur sometime during the assembly process and result in costly losses and time-consuming. The detection of these components with a model based on deep learning may be effective to reduce some errors during the inspection in the manufacturing process. In this paper, YOLO models were used due to their high speed and good accuracy in classification and target detection. A SMD detection and classification method using YOLO networks based on robust data preprocessing and augmentation techniques to deal with various types of variation such as illumination and geometric changes is proposed. For 9 different components of data provided from a PCB manufacturer company, the experiment results show that YOLOv4 is better with fast detection and classification than YOLOv3.

Analyzing the Applicability of Greenhouse Detection Using Image Classification (영상분류에 의한 하우스재배지 탐지 활용성 분석)

  • Sung, Jeung Su;Lee, Sung Soon;Baek, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Jeju where concentrates on agriculture and tourism, conversion of outdoor culture into cultivation under structure happens actively for the purpose of increasing profit so continuous examination on house cultivation area is very important for this region. This paper is to suggest the effective image classification method using high resolution satellite image to detect the greenhouse. We carried out classification of greenhouse using the supervised classification and rule-based classification method about Formosat-2 images. Connecting result of two classification try to find accuracy improvement for greenhouse detection. Results about each classification method were calculated the accuracy by comparing with the result of visual detection. As a result, mahalanobis distance among the supervised methods was resulted in the highest detection. Also, it could be checked that detection accuracy was improved by tying with result of supervised method and result of rule-based classification. Therefore, it was expected that effective detection of greenhouse would be feasible if henceforward further study is performed in the process of connecting supervised classification and rule-based classification.

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

Image Feature-based Electric Vehicle Detection and Classification System Using Machine Learning (머신 러닝을 이용한 영상 특징 기반 전기차 검출 및 분류 시스템)

  • Kim, Sanghyuk;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1092-1099
    • /
    • 2017
  • This paper proposes a novel way of vehicle detection and classification based on image features. There are two main processes in the proposed system, which are database construction and vehicle classification processes. In the database construction, there is a tight censorship for choosing appropriate images of the training set under the rigorous standard. These images are trained using Haar features for vehicle detection and histogram of oriented gradients extraction for vehicle classification based on the support vector machine. Additionally, in the vehicle detection and classification processes, the region of interest is reset using a number plate to reduce complexity. In the experimental results, the proposed system had the accuracy of 0.9776 and the $F_1$ score of 0.9327 for vehicle classification.

A Hierarchical Deep Convolutional Neural Network for Crop Species and Diseases Classification (Deep Convolutional Neural Network(DCNN)을 이용한 계층적 농작물의 종류와 질병 분류 기법)

  • Borin, Min;Rah, HyungChul;Yoo, Kwan-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1653-1671
    • /
    • 2022
  • Crop diseases affect crop production, more than 30 billion USD globally. We proposed a classification study of crop species and diseases using deep learning algorithms for corn, cucumber, pepper, and strawberry. Our study has three steps of species classification, disease detection, and disease classification, which is noteworthy for using captured images without additional processes. We designed deep learning approach of deep learning convolutional neural networks based on Mask R-CNN model to classify crop species. Inception and Resnet models were presented for disease detection and classification sequentially. For classification, we trained Mask R-CNN network and achieved loss value of 0.72 for crop species classification and segmentation. For disease detection, InceptionV3 and ResNet101-V2 models were trained for nodes of crop species on 1,500 images of normal and diseased labels, resulting in the accuracies of 0.984, 0.969, 0.956, and 0.962 for corn, cucumber, pepper, and strawberry by InceptionV3 model with higher accuracy and AUC. For disease classification, InceptionV3 and ResNet 101-V2 models were trained for nodes of crop species on 1,500 images of diseased label, resulting in the accuracies of 0.995 and 0.992 for corn and cucumber by ResNet101 with higher accuracy and AUC whereas 0.940 and 0.988 for pepper and strawberry by Inception.

Technology Trends and Analysis of Deep Learning Based Object Classification and Detection (딥러닝 기반 객체 분류 및 검출 기술 분석 및 동향)

  • Lee, S.J.;Lee, K.D.;Lee, S.W.;Ko, J.G.;Yoo, W.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • Object classification and detection are fundamental technologies in computer vision and its applications. Recently, a deep-learning based approach has shown significant improvement in terms of object classification and detection. This report reviews the progress of deep-learning based object classification and detection in views of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), and analyzes recent trends of object classification and detection technology and its applications.

Advancements in Unmanned Aerial Vehicle Classification, Tracking, and Detection Algorithms

  • Ahmed Abdulhakim Al-Absi
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.32-39
    • /
    • 2023
  • This paper provides a comprehensive overview of UAV classification, tracking, and detection, offering researchers a clear understanding of these fundamental concepts. It elucidates how classification categorizes UAVs based on attributes, how tracking monitors real-time positions, and how detection identifies UAV presence. The interconnectedness of these aspects is highlighted, with detection enhancing tracking and classification aiding in anomaly identification. Moreover, the paper emphasizes the relevance of simulations in the context of drones and UAVs, underscoring their pivotal role in training, testing, and research. By succinctly presenting these core concepts and their practical implications, the paper equips researchers with a solid foundation to comprehend and explore the complexities of UAV operations and the role of simulations in advancing this dynamic field.

Supervised classification for greenhouse detection by using sharpened SWIR bands of Sentinel-2A satellite imagery

  • Lim, Heechang;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.435-441
    • /
    • 2020
  • Sentinel-2A satellite imagery provides VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) wavelength bands, and it is known to be effective for land cover classification, cloud detection, and environmental monitoring. Greenhouse is one of the middle classification classes for land cover map provided by the Ministry of Environment of the Republic of Korea. Since greenhouse is a class that has a lot of changes due to natural disasters such as storm and flood damage, there is a limit to updating the greenhouse at a rapid cycle in the land cover map. In the present study, we utilized Sentinel-2A satellite images that provide both VNIR and SWIR bands for the detection of greenhouse. To utilize Sentinel-2A satellite images for the detection of greenhouse, we produced high-resolution SWIR bands applying to the fusion technique performed in two stages and carried out the detection of greenhouse using SVM (Support Vector Machine) supervised classification technique. In order to analyze the applicability of SWIR bands to greenhouse detection, comparative evaluation was performed using the detection results applying only VNIR bands. As a results of quantitative and qualitative evaluation, the result of detection by additionally applying SWIR bands was found to be superior to the result of applying only VNIR bands.

Detection and Classification of Bearing Flaking Defects by Using Kullback Discrimination Information (KDI)

  • Kim, Tae-Gu;Takabumi Fukuda;Hisaji Shimizu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • Kullback Discrimination Information (KDI) is one of the pattern recognition methods. KDI defined as a measure of the mutual dissimilarity computed between two time series was studied for detection and classification of bearing flaking on outer-race and inner-races. To model the damages, the bearings in normal condition, outer-race flaking condition and inner-races flaking condition were provided. The vibration sensor was attached by the bearing housing. This produced the total 25 pieces of data each condition, and we chose the standard data and measure of distance between standard and tested data. It is difficult to detect the flaking because similar pulses come out when balls pass the defection point. The detection and classification method for inner and outer races are defected by KDI and nearest neighbor classification rule is proposed and its high performance is also shown.