KSII Transactions on Internet and Information Systems (TIIS)
/
제10권12호
/
pp.5249-5267
/
2016
Cognitive radio is an efficient technique to improve spectrum efficiency and relieve the pressure of spectrum resources. In this paper, we investigate the spectrum sensing period in cooperative relay cognitive radio networks; analyze the relationship between the available capacity and the signal-to-noise ratio of the received signal of second users, the target probability of detection and the active probability of primary users. Finally, we derive the closed form expression of the optimal spectrum sensing period in terms of maximum throughput. We simulate the probability of false alarm and available capacity of cognitive radio networks and compare optimal spectrum sensing period scheme with fixed sensing period one in these performance. Simulation results show that the optimal sensing period makes the cognitive networks achieve the higher throughput and better spectrum sensing performance than the fixed sensing period does. Cooperative relay cognitive radio networks with optimal spectrum sensing period can achieve the high capacity and steady probability of false alarm in different target probability of detection. It provides a valuable reference for choosing the optimal spectrum sensing period in cooperative relay cognitive radio networks.
Silicon quantum dots base on photoluminescent porous silicon were prepared from an electrochemical etching of n-type silicon wafer (boron-dopped<100> orientation, resistivity of 1~10 ${\Omega}-cm$) and used as a alcohol sensor. Silicon quantum dots displayed an emission band at the wavelength of 675 nm with an excitation wavelength of 480 nm. Photoluminescence of silicon quantum dots was quenched in the presence of alcohol vapors such as methanol, ethanol, and isopropanol. Quenching efficiencies of 21.5, 32.5, and 45.8% were obtained for isopropanol, ethanol, and methanol, respectively. A linear relationship was obtained between quenching efficiencies and vapor pressure of analytes used. Quenching photoluminescence was recovered upon introducing of fresh air after the detection of alcohol. This provides easy fabrication of alcohol sensor based on porous silicon.
We previously reported a 27.12 MHz inductively coupled plasma source at atmospheric pressure for atomic emission spectrometry based on polymer microchip plasma technology. For the PDMS polymer microchip plasma, molecular emission was observed, but no metallic detection was done. In this experiment, a lab-made electrothermal vaporizer (ETV) with tantalum coil was connected to the microchip plasma for aqueous sample introduction to detect metal ions. The electrode geometry of this microchip plasma was redesigned for better stability and easy monitoring of emission. The plasma was operated at an rf power of 30-70 W using argon gas at 300 mL/min. Gas kinetic temperatures between 800-3200 K were obtained by measuring OH emission band. Limits of detection of about 20 ng/mL, 96.1 ng/mL, and 1.01 μ g/mL were obtained for alkali metals, Zn, and Pb, respectively, when 10 μ L samples in 0.1% nitric acid were injected into the ETV.
This study receives the noise transmitted in a constant audio frequency range through a microphone array in which the noise(like grease in a pan) occurs on the power supply line due to the troublesome partial discharge(arc). Then by going through a series of signal processing of removing noise, this study measures the distance and direction up to the noise caused by the troublesome partial discharge(arc) and monitors the result by displaying in the analog and digital method. After these, it determines the state of each size and judges the distance and direction of problematic part. When the signal sound transmitted by the signal source of bad insulator is received on each microphone, the signal comes only in the frequency range of 20 kHz by passing through the circuit of amplification and 6th low pass filter. Then, this signal is entered in a digital value of digital signal processing(TMS320F2812) through the 16-bit A/D conversion. By doing so, the sound distance, direction and coordinate of bad insulator can be detected by realizing the correlation method of detecting the arriving time difference occurring on each microphone and the algorithm of detecting maximum time difference.
The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement of transverse natural frequencies is examined. The problem is solved by representing the crack by a massless rotational spring, simulating the out-of-plane transverse vibration only without solving the coupled torsional vibration and using the transfer matrix method for solution of the governing equation. The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration analysis and deflection method. The details of the two methods are given. The results by the two methods are presented graphically and show good agreement. Crack locations are also determined by the inverse analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild steel pipes respectively.
A highly sensitive detecting method has been developed for determining part per billion of sulfur in $H_2S$/Ar plasma. The method is based on the excitation of Ar/$H_2S\;or\;Ar/H_2S/O_2$ mixture in hollow cathode glow discharge sustained by radiofrequency (RF) or 60 Hz AC power and the spectroscopic measurement of the intensity of emission lines from electronically excited $S_2^*\;or\;SO_2^*$ species, respectively. The RF or AC power needed for the excitation did not exceed 30 W at a gas pressure maintained at several mbar. The emission intensity from the $SO_2^*$ species showed excellent linear response to the sulfur concentration ranging from 5 ppbv, which correspond to S/N = 5, to 500 ppbv. But the intensity from the $S_2^*$ species showed a linear response to the $H_2S$ only at low flow rate under 20 sccm (mL/min) of the sample gas. Separate experiments using $SO_2$ gas as the source of sulfur demonstrated that the presence of $O_2$ in the argon plasma is essential for obtaining prominent $SO_2^*$ emission lines.
Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.
The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권4호
/
pp.1080-1099
/
2023
Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.
Zidovudine is an antiretroviral agent prescribed for the prevention and treatment of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). It is typically recommended to be used in combination with other antiretroviral drugs. Zidovudine has the potential to generate N-nitrosodimethylamine (NDMA) in the presence of dimethylamine and nitrite salt under acidic reaction conditions during the drug manufacturing process. NDMA is a potent human carcinogen that may be detected in drug substances or drug products. An analytical method was developed to determine NDMA in pharmaceuticals including zidovudine using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The analysis involved reversed-phase chromatography on a Kinetex F5 column with a mobile phase comprising water-acetonitrile mixtures. The detection of positively charged ions was conducted using atmospheric pressure chemical ionization (APCI). The calibration curve demonstrated excellent linearity (r = 0.9997) across the range of 1-50 ng/mL with a highly sensitive limit of detection (LOD) at 0.3 ng/mL. The developed method underwent thorough validation for specificity, linearity, accuracy, precision, robustness, and system suitability. This sensitive and specific analytical method was applied for detecting NDMA in zidovudine drug substance and its formulation currently available in the market, indicating its suitability for drug quality management purposes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.