DOI QR코드

DOI QR Code

Polymer (Polydimethylsiloxane (pdms)) Microchip Plasma with Electrothermal Vaporization for the Determination of Metal Ions in Aqueous Solution

  • Ryu, Won-Kyung (Department of Chemistry, Dankook University-NSBT) ;
  • Kim, Dong-Hoon (Department of Chemistry, Dankook University-NSBT) ;
  • Lim, H.B. (Department of Chemistry, Dankook University-NSBT) ;
  • Houk, R.S. (Department of Chemistry, Iowa State University-Ames Lab)
  • Published : 2007.04.20

Abstract

We previously reported a 27.12 MHz inductively coupled plasma source at atmospheric pressure for atomic emission spectrometry based on polymer microchip plasma technology. For the PDMS polymer microchip plasma, molecular emission was observed, but no metallic detection was done. In this experiment, a lab-made electrothermal vaporizer (ETV) with tantalum coil was connected to the microchip plasma for aqueous sample introduction to detect metal ions. The electrode geometry of this microchip plasma was redesigned for better stability and easy monitoring of emission. The plasma was operated at an rf power of 30-70 W using argon gas at 300 mL/min. Gas kinetic temperatures between 800-3200 K were obtained by measuring OH emission band. Limits of detection of about 20 ng/mL, 96.1 ng/mL, and 1.01 μ g/mL were obtained for alkali metals, Zn, and Pb, respectively, when 10 μ L samples in 0.1% nitric acid were injected into the ETV.

Keywords

References

  1. Bessoth, F. G.; Naji, O. P.; Eijkel, P. J. C. T.; Manz, A. J. Anal. At. Spectrom. 2002, 17, 794 https://doi.org/10.1039/b203180a
  2. Eijkel, J. C. T.; Stoeri, H.; Manz, A. Anal. Chem. 1999, 71, 2600 https://doi.org/10.1021/ac990257j
  3. Eijkel, J. C. T.; Stoeri, H.; Manz, A. J. Anal. At. Spectrom. 2000, 15, 297 https://doi.org/10.1039/a909238b
  4. Kunze, K.; Miclea, M.; Fanzke, J.; Niemax, K. Spectrochim. Acta B 2003, 58, 1435 https://doi.org/10.1016/S0584-8547(03)00104-6
  5. Engel, U.; Bilgic, A. M.; Haase, O.; Voges, E.; Broekaert, J. A. C. Anal. Chem. 2000, 72, 193 https://doi.org/10.1021/ac9906476
  6. Minayeva, O. B.; Hopwood, J. A. J. Anal. At. Spectrom. 2002, 17, 1103 https://doi.org/10.1039/b202121h
  7. Franzke, J.; Kunze, K.; Miclea, M.; Niemax, K. J. Anal. At. Spectrom. 2003, 18, 802 https://doi.org/10.1039/b300193h
  8. Guchardi, R.; Hauser, P. C. J. Anal. At. Spectrom. 2003, 18, 1056 https://doi.org/10.1039/b301659p
  9. Karanassios, V. Spectrochimica Acta Part B 2004, 59, 909 https://doi.org/10.1016/j.sab.2004.04.005
  10. Lim, H. B.; Kim, D. H.; Jung, T. Y.; Houk, R. S.; Kim, Y. S. Anal. Chim. Acta 2005, 545, 119 https://doi.org/10.1016/j.aca.2005.04.067
  11. Kantor, T.; Maestre, S.; de Loos-Vollebregt, M. T. C. Spectrochimica Acta Part B 2005, 60(9/10), 1323 https://doi.org/10.1016/j.sab.2005.06.011
  12. Chen, S.; Lu, D.; Hu, Z.; Wu, B. Spectrochimica Acta Part B 2005, 60(4), 537 https://doi.org/10.1016/j.sab.2005.02.019
  13. Saint'Pierre, T. D.; de Andrade Maranhão, T.; Frescura, V. L. A.; Curtius, A. J. Spectrochimica Acta Part B 2005, 60(5), 605 https://doi.org/10.1016/j.sab.2004.12.004
  14. Kim, S.; Lim, J.; Lee, W.; Kim, Y.; Nam, S.; Lee, Y. Microchemical J. 2004, 78(2), 127 https://doi.org/10.1016/j.microc.2004.03.003
  15. Lia, L.; Hu, B.; Xia, L.; Jiang, Z. Talanta 2006, 70(2), 468 https://doi.org/10.1016/j.talanta.2006.03.006
  16. Sturgeon, R. E.; Lam, J. W. J. Anal. At. Spectrom. 1999, 14, 785 https://doi.org/10.1039/a809460h
  17. Resano, M.; Verstraete, M.; Vanhaecke, F.; Moens, L. J. Anal. At. Spectrom. 2001, 16, 1018 https://doi.org/10.1039/b101588p
  18. Karanassios, V.; Grisko, V.; Reynolds, G. G. J. Anal. At. Spectrom. 1999, 14, 565 https://doi.org/10.1039/a807032f
  19. Jung, T. Y.; Kim, Y. S.; Lim, H. B. Analytical Sciences 2005, 21, 569 https://doi.org/10.2116/analsci.21.569
  20. Sung, Y. I.; Lim, H. B. J. Anal. At. Spectrom. 2003, 18, 897 https://doi.org/10.1039/b303191h

Cited by

  1. Battery-operated, argon–hydrogen microplasma on hybrid, postage stamp-sized plastic–quartz chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer vol.401, pp.9, 2011, https://doi.org/10.1007/s00216-011-5372-x
  2. LA-ICP-MS with microarray chip sampling to determine holoceruloplasmin in serum vol.27, pp.7, 2012, https://doi.org/10.1039/c2ja10375c
  3. Atomic spectrometry update. Advances in atomic emission, absorption, and fluorescence spectrometry, and related techniques vol.23, pp.6, 2008, https://doi.org/10.1039/b805770m
  4. Helium–hydrogen microplasma device (MPD) on postage-stamp-size plastic–quartz chips vol.395, pp.3, 2009, https://doi.org/10.1007/s00216-009-2942-2
  5. Array-type microchip sampling to determine trace metal in photoresist used in semiconductor manufacturing process vol.25, pp.5, 2010, https://doi.org/10.1039/b916064g
  6. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction vol.63, pp.11, 2007, https://doi.org/10.1016/j.sab.2008.09.006
  7. He-Polymer Microchip Plasma (PMP) System Incorporating a Gas Liquid Separator for the Determination of Chlorine Levels in a Sanitizer Liquid vol.30, pp.3, 2007, https://doi.org/10.5012/bkcs.2009.30.3.595
  8. Preparation of Metal-p-aminobenzyl-DOTA Complex Using Magnetic Particles for Bio-tagging in Laser Ablation ICP-MS vol.33, pp.11, 2007, https://doi.org/10.5012/bkcs.2012.33.11.3665