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a b s t r a c t

The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic
detection mechanism. Existing models and methods for fault diagnosis using different mathematical/
statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault
diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for
component-level fault diagnosis. The technique integrates separately-built, separately-trained, special-
ized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with
each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal
faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and
pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-
estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with
component level parameters that represent the steady state and selected faults in the components. For
optimization purposes, we considered and compared the performances of different multiclass models in
MATLAB, using different coding matrices, as well as different kernel functions on the representative data
derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting
Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized
to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation
methods are presented in this paper.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In nuclear power systems, the nature of incipient and novel
faults makes their diagnosis problematic. This largely results from
the fact that the symptoms of these kinds of faults lie within the
range of covered by the compensatory actions of the reactor control
systems. Hardware degradation, cracks in components and leak-
ages in valves and pipings that are not large enough to change the
operating set point could remain undetected for a long time and are
indicators of incipient faults. Undetected, incipient faults could
result in large faults necessitating emergency shutdown, downtime
and costly start-up procedures. In addition, the occurrence of faults
in systems are mostly random, hence detection mechanism needs
to be robust and dynamic. A number of models and methods for
fault diagnosis using various mathematical/statistical inferences,
but the seemingly elusive aspect - especially in nuclear plants - is

the detection and diagnosis of incipient and novel faults. Detection
of incipient fault is important because if such fault is allowed to
propagate, it could have catastrophic consequences for the safety of
the plant and environment, as well as human health.

In the applications of Failure Mode and Effect Analysis (FMEA)
and failure probability calculations, not all failed components have
catastrophic effects [1]. That is, if an increase in failure rate of a
certain component does not have any considerable effect on the
safety of the system, then further analysis of such components is of
little importance [2]. A similar theory could be extended to fault
diagnosis system. Hence, our research aims to diagnose marginal
faults that could be a time-dependent catastrophe if not detected,
diagnosed and managed promptly.

In this work, we propose a distributed training method for
multi-class Support Vector Machine (SVM) modules, with each
trained SVM model monitoring each sub-unit of the Reactor
Coolant System (RCS) of a Pressurize Water Reactor (PWR) nuclear
power plant. To optimize the SVM modules and select the best
training algorithm, we consider and compare the performances of
different multiclass implementation algorithms, using different
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coding matrices, as well as different kernel functions (linear and
Gaussian kernel) on the representative data derived from the best-
estimate simulation of Qinshan I NPP, and the data set is then uti-
lized with MATLAB machine learning toolbox to obtain optimum
result. Section II summarizes the past work on the use of SVM for
multiclass modeling and Section III describes the SVM model as
applied to fault diagnosis in RCS of a PWR. Section IV explains the
fault modeling for the coolant system sub-unit and the assump-
tions made. The implementation and experimental result is pre-
sented in Section V and we summarized the paper in Section VI.

2. Background and related works

SVM is a branch of statistical learning theory that uses a linear
plane or hyperplane in feature space (of higher dimension for lin-
early inseparable input space) to derive its hypothesis. The basic
quadratic problem of SVM is to find the “smoothest” estimating
function capable of predicting new instances based on previous
know instances. When supervised, SVM act as a form of
knowledge-based fault diagnosis system. When unsupervised, it is
able to cluster parameters to diagnose novel faults. The common
contention about data-driven algorithms is that the number of
possible faults in complex systems like NPP is unbounded; hence
the potential faults cannot be exhaustively identified. Meanwhile,
the alternatives are not very inspiring. Physical models have limi-
tations, including model inaccuracies and issues with linearization
of nonlinear systems, among others.

In Ref. [3], the kernel-based Gaussian process is applied to
predict faults in nuclear plant mechanical systems. The method
utilized the learning ability of the Gaussian process to predict
degradations in the system. Support vector machine is utilized to
predict degradation in nuclear plant auxiliary components in
Ref. [4], while in our previous work, we utilized the real-value
output capability of support vector regression and the noise-
reduction capability of feature selection algorithms to estimate the
severity of rupture fault in the steam generator tubes Ref. [5]. These
research papers [6,7] give a good discussion on SVM technique for
fault diagnosis and their superior performances over other data-
driven approaches for various classification tasks. However,
appropriate selection of learning algorithm suitable for a particular
task is important for effective utilization of SVM. Also, the plethoras
of proposed techniques have not been implemented in operating
nuclear plants. Some practical challenges identified as barriers to
their implementation include model inconsistencies with the
complexity of process dynamics, limited ranges of validity of the
models, incomplete uncertain data, model complexity and inexact
knowledge of parameters and driving forces [8]. We utilized our
experience with reactor dynamics and the superior modeling
capability of RELAP5 code to address most of these limitations.
Moreover, traditional learning algorithms are bugged with few
challenges: Over-fitting, generalization and local minima, explod-
ing and impractical hypothesis, limitation of training examples and
inconsistency issues. However, SVM's use of kernel function en-
ables it to output a compact hypothesis space that handles most of
the issues bugging other learning algorithms.

Support Vector Machine (SVM) application to various classifi-
cation and regression problems (both supervised and unsuper-
vised) have been researched [9,10]. In this paper, the selection of
SVM for nuclear plant fault classification is based solely on per-
formance. Fault detection is a classification problem, and research
has shown that SVM performs better than other types of learning
algorithms for classification problems [11]. Two key elements in the
implementation of SVM are the techniques of mathematical pro-
gramming and kernel functions, and the flexibility of kernel func-
tions allows the SVM to search a wide variety of hypothesis by

constructing an optimal separating hyper-plane in the hypothesis
spaces.

Fundamental SVM algorithm has been used for binary classifi-
cation purposes. In its simplest form, SVM binary classifier
f ðxÞ ¼ uT4ðxjÞ þ b separates two different instances of a given lin-
early separable data fxj;yjglj into positives and negatives (yj0s) such
that for yj ¼ þ ve,

uT4
�
xj
�þ b � 1

And for yj ¼ � ve,

uT4
�
xj
�þ b � 1

Where l the number of instances is, u is the weighing parameter,
and b specifies the location of the hyper plane bias away from the
origin; xi2<D, yj2f� 1; þ 1g, 4ðxjÞ is a mapping function that
defines the kernel function kðxixjÞ ¼ h4ðxiÞ; 4ðxjÞi. The nonlinear
kernel technique is utilized to find the best separating boundary
and classify training instances and that are not linearly separable.
This kernel function maps the input space from a lower dimension
to higher dimensional input space, where linear separation is
possible. The decision function learned by such classifier has the
form [12].

f ðxÞ ¼ sign

 X
i

aiyikðxixÞ þ b

!

Where x is a generic test point, and ai is the “embedding strength”
of the pattern xi� the number of times misclassification of xi has
caused a shift in u.

To guarantee the best generalization performance for a highly
nonlinear system like NPP, a robust SVM for multiclass classifica-
tion is required. Recent advances have seen SVM being used for
multiple classifications and regression tasks in engineering systems
[13,14]. This was achieved by using the existing powerful binary
algorithms to break a multi-class problem into several binary
problems and combine the results together [15]. Some of the
methods used to achieve this are summarized in the following
section, although a robust description of these algorithms can be
found in Refs. [16,17].

2.1. Approaches for multi-class SVM

1. One-vs-all: Given p�class training instances (where p � 2), a
binary SVM classifier is trained such that it can distinguish one
class from the remaining p� 1 classes. This approach exhausts
all possible combination of classes as the number of binary
classifiers equals the number of classes, although it has been
shown that it gives unbalanced training sample sizes [18].

2. One-vs-one: For each binary learner, one class is positive,
another is negative, and the software ignores the rest [19]. This
design exhausts all combinations of class pair assignments. That
is, for p number of classes, one-vs-one requires pðp�1Þ

2 binary
classifications to capture all the combinations in the data.

3. Multiclass Objective Function: This approach simultaneously
computes multiclass classifiers in place of multiple binary
classifiers. Weston andWatkins [20] give the modified objective
function as:

min
W;b;x

"
1
2

XP
i¼1

kwk2 þ C
Xk
i¼1

X
rsyi

xri

#

Such that:
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Wyi :Xi þ byi � Wr:Xi þ br þ 2� x
Xr

i

Where C is the margin-misclassification tradeoff (regularization)
parameter, xri � 0 are the slack variables; i ¼ 1; :::; k and
yi2f1; :::::Pg are the multi-class labels r2f1; ::::; Pg are multi-class
labels excluding yi.

4. Error-Correcting Output Code based approach: This approach
extends the binary classifiers to solve multi-class problems by
reducing multi-class problems to a set of binary classifiers and
assigning a unique coding design to each class, codes that
determine the training of classifiers and decoding of the pre-
dicted results. That is, for a P class problem, a coding matrix U2
f±1gP�C is derived. This approach has been shown to have
better classification accuracy compared to other multiclass
models [21,22].

3. The theory of distributed fault diagnosis using SVM

The effectiveness of data-driven approaches in diagnosing
incipient faults in complex systems like NPP has been contested
from the fact that component interactions could affect the integrity
of the data used for training the model. That is, parameter de-
viations indicating faults in one component are passed to the other
sub-unit through the effect of fluid pressure, temperature, flow, and
even instrumentation and control systems. Instrumentation and
control (I&C) system compensate for small transients and de-
viations in nuclear plant parameters. This compensatory action has
made the diagnosing of incipient faults in NPP problematic. To this
end, we propose a distributed fault diagnostic system which uses
component-level data in diagnosing faults. This system has the
capability to independently monitor components and use the data
to detect and diagnose faults. We propose a categorization of the
RCS into five (5) sub-units, each unit being monitored by a
separately-built, separately-trained, specialized SVM module.
Consequently, each SVM tracks the component's parameters real
time, and any deviation is mapped, flagged and indicated on the
operator support Human-Machine Interface. Also, for each moni-
toring system, calculated parameters and the corresponding mea-
surements are compared respectively to judge whether sub-units
are abnormal or not. Fig. 1 shows the schematic of this system.

As a result of the vast and possibly inexhaustible representation
space for likely faults that can occur in a complex engineering
system, the introduction of the data-driven approach has been
discouraged in some industries. To address this issue, we propose
the use of the DSVM to investigate those faults with a greater
likelihood of resulting in a catastrophic accident if not properly
managed. Integration of comprehensive FMEA result to fault diag-
nosis decision is a necessary step to achieve an efficient FDI system
[23]. The FMEA is expected to specify and identify failure modes,
severity and the probability of occurrence in order to categorize key
faults that could lead to catastrophic failure. A modified illustration
of such categorization is as shown in Table 1 [24].

Hence, we integrate aspects of FMEA into the fault diagnostic
system. In analyzing how safety systems may fail, identifying the
cause in term of a distinct fault mode has been useful when
different fault modes could lead to different effects requiring
different means and degrees of mitigation. FMEA details the
manner in which faults could appear in safety-critical components
and the effect of such fault on the safety functions. One of these
analyses is the Leak Before Break (LBB) approach [25]. Leak before
break aims to apply fracture mechanics technology to demonstrate
that piping is very unlikely to experience double-ended-guillotine-

break under all loading conditions. Following this philosophy,
research progress has been recorded in the area of postulating
ruptures and other faults in high energy piping systems. Never-
theless, there exist important questions about the manner inwhich
faults could appear in safety-critical components and the effect of
the fault on the safety functions.

When these key faults are identified, then a robust data-driven
fault detection and isolation technique can be utilized for prompt
diagnosis. A method for creating, implementing and evaluating
such system is the aim of this research.

In this work, the faults are diagnosed by training distributed
SVM based solely on the local datasets. That is, each trained SVM
uses the local datasets to diagnose faults. This method has two
advantages: Fault localization is easy, as each SVMmodule predicts
local faults. Also, component level incipient faults can be diagnosed
effectively. The implementation of the distributed SVM method
that uses data from each sub-unit, based on this categorization, is
explained in the following section.

4. Fault modeling and the simulated plant sub-unit

The success of any data-driven method depends largely on the
quality of the training data. To obtain quality data that is repre-
sentative of an operating NPP, RELAP5/Mod4.0 thermal hydraulics
code was used to model and simulate faults in Qinshan I NPP.
Qinshan phase I NPP is a two-loop 300 MW Chinese version of the
PWR and RELAP 5/Mod4.0 is a best-estimate thermal-hydraulic
computer code that is used for reactor system safety and uncer-
tainty analysis. The purpose of this simulation is to test the method
on characteristic data from Qinshan I NPP parameters that serve as
a close representation of the dynamics common to the nuclear
plant. To confirm model accuracy, Table 2 shows the comparison of
a few selected initial condition (steady state) parameters used as
the operating parameters for the Qinshan I NPP simulation and the
actual operating parameters. In addition, Fig. 2 shows the nodalized
sub-unit, consisting of a steam generator and pressurizer.

5. Demonstration of the proposed method

We investigated the robustness of themethod by simulating five
(5) different fault types in the RCS of the Qinshan I pressurized
water reactor using RELAP5/Mod4.0. First, a general model of a
reactor system for Qinshan I NPP is assembled and the parameter
correlations with measured values are compared, as in Ref [5].
Then, this full model is sectioned, each section containing different
sub-components. For the purpose of evaluating the proposed
method, one of the sections is selected and studied. As shown in
Fig. 2, the sub-unit analyzed is the loop #1 of the RCS, comprising of
a hot leg, steam generator, and the pressurizer. The distributed SVM
is applied to detect and diagnose faults in these components. In
order to reflect the status of RCS, the process is summarized in the
following steps:

1. The full RCS is first simulated using RELAP 5 code. To confirm
model accuracy, this full RCS model is then debugged and the
calculated result is compared with the measured steady-state
operating plant parameters.

2. Secondly, the RCS is divided into five (5) sub-units and then one
of these units is selected to investigate the effectiveness of the
method. Similarly, the simulation model is debugged to ensure
that simulated parameters are consistent with design parame-
ters under all running conditions. Fig. 2 shows the selected sub-
unit, and Table 2 shows the comparison between the calculated
and measured steady-state parameters for the sub-unit.
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3. Faults are simulated in the selected sub-unit. Fig. 3 shows the
implementation in RELAP 5.

4. Data from the simulated faults are used to train the distributed
SVMmodel, representing how it can be built in each sub-unit of
the RCS.

5. The trained SVM is initialized after obtaining the related, real-
time parameters indicating the steady state and the simulated
faults in the sub-unit. Thus, the model can track the RCS sub-
unit synchronously and separately.

5.1. Model assumptions and incipient faults description

This section describes the simulated faults and the assumption
made in the plant model. The in-built fault diagnosis system in
most nuclear power plants can detect cracks around 70 mm in
length, with break flow rate above 0.5 kg/s [25]. Hence, we classify

breaks below this threshold as incipient. We investigate faults such
as the Leak Before Break (LBB) in pressurizer and the steam
generator (SG), as flaws such as the LBB in the internal surface of
the SG tube pipe can grow through the wall and could lead to a
catastrophic break if undetected. This is a form of leak detection by
detection of precursors. Hence, rupture in pipelines (incipient leaks
and cracks) without Safety Injection System (SIS) activation is
selected as a case study to verify the distributedmonitoring system.
Since the break flow is within the makeup capacity of the charging
system, an automatic reactor trip will not occur and if the faults are
rapidly detected and diagnosed, controlled shutdown of the reactor
would be performed utilizing the appropriate non-emergency
procedures. For this analysis, the following assumptions are made:

1. Makeup and letdown flow rates are constant.
2. Feed water and SG steam flow rates are constant.

Fig. 1. Schematic of the distributed SVM for component level fault diagnosis.

Table 1
An illustration of FMEA results for fault categorization.

Category Classification Definition

I Catastrophic A fault which may lead to a failure which could cause death or severe destruction.
II Critical A fault which may lead to a failure which may cause serious injury, major damage, and result in mission loss.
III Marginal A fault which may lead to a failure that could cause minor injury, minor system damage and result in delay or loss of availability or mission

degradation
IV Minor A fault which could lead to a failure not serious enough to cause injury, property damage, or unscheduled maintenance repair.

Table 2
Comparison between the calculated and measured plant steady-state parameters.

Monitoring sub-unit Parameters Measured values Simulated values Error

Steam Generator Feed water flow 259.86 kg/s 259.92 kg/s 0.02%
Steam outlet temperature 270.21 �C 271.9 �C 0.6%
Steam pressure 5.5Mpa 5.52Mpa 0.36%
SG water level 10.47 m 10.44 m 0.21%

Pressurizer Pressurizer pressure 15.4 MPa 15.3 MPa 0.60%
Pressurizer level 5.400 m 5.42 m 0.37%

A. Ayodeji, Y.-k. Liu / Nuclear Engineering and Technology 50 (2018) 1306e1313 1309



Fault 1&2: Incipient tube crack events (TC5mm2 and TC10 mm2)
- A 0.20 kg/s fault (0.8 mm axial crack) and 0.4 kg/s (1.6 mm
circumferential crack) fault in the steam generator u-tube were
separately simulated. These kinds of cracks are difficult to detect
and diagnose by the conventional fault diagnostic method and the
leaking tube can be categorized as marginal, with the potential of
being catastrophic if not detected on time. These cracks were
simulated with a 5 mm2 and a 10 mm2 trip (break) valve, linking
volume 6 of pipe 108 to volume 5 of pipe 160 in the nodalized sub-
unit shown in Fig. 3. The valve trip signal is set to open after 100sec
of steady-state operation.

Fault 3: Steam Generator Inlet Plenum Crack (SGIPC) - Similarly,
a crack modeled with a break valve area of 5 mm2 is simulated in
the Steam Generator Inlet Plenum (SGIPC, Transient 2 in Fig. 3.) The
trip signal for this fault is set at 50sec after steady state operation of
the simulated RCS sub-units.

Fault 4: Crack in steam generator down-comer side (SGDC): We
modeled a crack in the steam generator tube, down-comer side,
with a break valve of area 5 mm2, opening exactly 50sec after
steady-state operations.

Fault 5: Pressurizer pressure boundary crack (PZRC): The last
fault is a crack of area 5 mm2 at the pressurizer, leading to slow
depressurization of the RCS. This fault is also modeled using break
valve and the trip is set at 200sec after steady calculations. Choking
flow is represented by the break valve used in simulating all faults.
Figs. 4e6 show parameter deviations for the steady-state and faults
conditions.

5.2. Simulation result discussion and analysis

First, to reduce the dimensionality of the data set, and to aid the
prediction speed of the trained model, we selected a subset of the
measured features using the sequential feature selection function,
sequentiaIfs, in MATLAB. This result in 9 features from the initial 21
parameters obtained from the simulation. The resulting features
from the function are used in the selection of a classification model.
Secondly, the features selected were utilized for the evaluation of

appropriate classification model. The automatic training to select
the best classification model type was performed using the classi-
fication learner application in MATLAB machine learning toolbox.
This application performs automatic training using the data on
classification models such as nearest neighbors, ensemble classi-
fiers, logistic regression, discriminant analysis, support vector
machine, and decision trees. The optimum result was obtainedwith
Error Correcting Output Code support vector machine classification
model. The next challenge is the selection of the optimum coding
matrix.

The MATLAB implementation presents the ECOC learning algo-
rithm with the option of selecting various coding matrix design
with different kernel functions. That is, it gives an option of
exploring different hypothesis space with the possibility of modi-
fying the learning algorithm. In this paper, we evaluated the coding
matrices available in the program, and test their performance on
different amount of data set. We carry out this experiment to
examine the possibility of increasing the computational speed of
the SVM using a few data points. First, the Error Correcting Output
Code (ECOC) learning algorithm was utilized to train the SVM
model, using training data set composed of 1950 data points (390
observations for each class, 1e5). Each data points are labeled ac-
cording to their fault name as shown in Figs. 3e5 above. Then, a
template for the SVM classifier, templateSVM was specified as the
learner algorithm. The template uses a default linear kernel func-
tion and thematrix is standardized. Furthermore, a fitcecoc function
that fits a multiclass model using the ECOC learning algorithm is
implemented, using one-vs-one default predictor first. All the ECOC
models were cross-validated using k-fold option, with k ¼ 10. The
resulting model is a ClassificationPartitionedECOC cross-validated
model, trained on 90% of the data. The remaining 10% is used as
an in-sample test data, to evaluate the generalization capability of
the model.

We repeated the experiment by training six (6) ECOC learners
using binary SVM with standardized predictors and different cod-
ing matrices. We also estimated the error (loss function) on the test
data using different cross-validation method. In this work, the loss

Fig. 2. The nodalized RCS sub-unit [5]
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functions or misclassification errors are the performance indicators
of the proposed model. The predictive performance of the ECOC
algorithm on the representative data using different cross-
validation method and the description of the coding matrices
available in MATLAB are as shown in Table 3. In addition, the results
of the experiments using different kernel function and cross-
validation method are displayed in the table. Hence, as shown in
Table 3, the one-vs-one coding matrix has the best performance
with the least loss.

To confirm that the model does not overfit, and to evaluate the
effect of the training data size on the model, we trained another
SVM classifier using 10845 training set. Following a similar pro-
cedure as described above, we also experimented with two kernel
functions, the linear and Gaussian kernels. Moreover, we used a
different out-of-sample test set comprising 1078 data points as an
independent, test of the model. To examine howwell the algorithm

generalizes and evaluate the accuracy of the trained model on an
independent out-of-sample test data, we called the function Loss on
the test data, by estimating the test sample classification error,
which returns the classification error for the test predictor data and
the true class labels. The resulting loss values are compared as
shown in Table 4.

In Table 4, it is observed that there is a marginal improvement in
the prediction capability of some codingmatrix usingmore training
data, while for some others, no significant change. Furthermore, we
observed a consistent, superior result for one-vs-one coding matrix.
However, it is also observed that similar results (zero loss) are
obtained from three different coding matrices, one-vs-one,

Fig. 3. Nodalized diagram of the RCS sub-unit with the faults modeled in RELAP 5.

Fig. 4. Variation of steam generator level during steady state and for all simulated
transients.

Fig. 5. Variations in steam generator outlet temperature during steady state and for all
simulated transients.
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TenaryComplete, and SparseRandom. That is, two other coding
matrices also give good results, with zero loss. Hence, to determine
the optimum model for our design, we compared the accuracy of
the models from the three best-performing coding algorithms. The
comparison was implemented by passing a new set of predictor
(unlabelled) data and the models into the compareHoldout function
in MATLAB. The function returns the comparison test decision by
displaying three parameters: h ε[0,1], which is the test of the null
hypothesis that the trained classification models have equal (h ¼ 0)
or unequal (h ¼ 1) accuracy for predicting the true class labels of
the new data at 5% significance level; the mid-p-value McNemar
test of the hypothesis, p, and the misclassification rate, e. Table 5
shows the results of the test.

In Table 5, all the three models have the same h-value, the one-
vs-one model has a slightly lower p-value and TenaryCcomplete
model has the least misclassification rate. The p-value is exactly 1
for both TenaryComplete and SparseRandom models, indicating
strong evidence to not reject the null hypothesis that one model is
less accurate than another. Hence, we select the best model based
on the misclassification rate result.

Consequently, the ECOC model with the Gaussian kernel and
TenaryComplete coding matrix is selected as the optimum model
design, used to predict faults at each subeunit of the reactor

Fig. 6. Variations in steam generator output pressure during steady state and for all
simulated transients.

Table 3
Results of the small data size model experiments with different coding matrices.

Coding Matrix Description In-sample
Loss(error)

Out-of-sample
Loss

One-vs-one For each binary learner, one class is positive, another is negative, and the software ignores the rest. 6.7682e-04 6.7682e-04
One-vs-all For each binary learner, one class is positive and the rest are negative. This design exhausts all combinations of

positive class assignments
0.0267 0.0311

Ordinal For the first binary learner, the first class is negative, and the rest positive. For the second binary learner, the first
two classes are negative, the rest positive, and so on.

0.0403 0.0471

DenseRandom For each binary learner, the software randomly assigns classes into positive or negative classes, with at least one
of each type.

0.0217 0.0662

BinaryComplete This design partitions the classes into all binary combinations and does not ignore any classes. For each binary
learner, all class assignments are �1 and 1 with at least one positive and negative class in the assignment.

0.0196 0.0213

TenaryComplete This design partitions the classes into all ternary combinations. All class assignments are 0,-1, and 1 with at least
one positive and one negative class in the assignment.

0.0020 0.0091

SparseRandom The software randomly assigns classes as positive or negative with probability 0.25 for each coding matrix
design, and ignores classes with probability 0.5.

0.0322 0.0135

Table 4
Results of larger data size experiments with different coding matrices.

Coding Matrix Linear Kernel Gaussian Kernel

In-sample Test Loss Out-of-sample Test Loss In-sample Test Loss Out-of-sample Test Loss

One-vs-one 1.6228e-04 0.0014 0 0
One-vs-all 0.0122 0.0128 1.6228e-04 0
Ordinal 0.0446 0.0442 1.6228e-04 0
DenseRandom 0.0125 0.0143 1.6228e-04 0
BinaryComplete 0.0118 0.0128 1.6228e-04 0
TenaryComplete 0.0112 0.0114 0 0
SparseRandom 0.0028 0.0028 0 0

Table 5
Comparison test of the models from the best performing coding matrices.

Testing parameters Models

One-vs-one Model TenaryComplete Model SparseRandom Model

h 0 0 0
p-value 0.99973 1 1
e 0.24373 0.10394 0.20072
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coolant system. Different faults were modeled and the imple-
mentation diagnosed the fault 100%. In our next research paper, we
will demonstrate the integration of the solution in an NPP's oper-
ator support system human-machine interface in a safe and non-
intrusive manner.

6. Conclusion, limitation and future work

This paper presents a distributed fault diagnostic technique
using multi-class support vector machine. The system integrates
separately-built, separately-trained, specialized SVM modules
capable of component-level fault diagnosis into a coherent intelli-
gent system, with each SVM module monitoring sub-units in a
nuclear plant components. The implementation of this technique in
an NPP has been demonstrated using the RELAP5/Mod4.0 to model
an RCS sub-unit of the Chinese CNP300 PWR. A multi-class SVM
model is trained with component level parameters that represent
the normal and selected faults in the sub-unit. In order to optimize
the generalization capability, we also trained the SVM using other
coding matrices. The coding matrix experimentation also enabled
the selection of a suitable algorithm for this classification task, and
to compare the result with other risk minimizing coding technique.
The result and main contribution of this paper can be summarized
as follows:

1. The design and implementation of a distributed support vector
machine technique for incipient fault diagnosis in a nuclear
plant coolant system is presented.

2. Each SVM module predicts faults for different locations in the
plant, and the distributive nature of the SVM modules take care
of the fault location. Consequently, fault localization is
addressed by the distributed SVM and fault severity is addressed
by the magnitude of parameter deviation from the nominal
value.

3. An effective method of selecting marginal faults using Failure
Mode and Effect Analysis (FMEA) report and modeling impor-
tant incipient faults with RELAP5/Mod4.0 is presented.

4. This work demonstrates the superior performance of Error
Correcting Output Code learning algorithmwith TenaryComplete
coding matrix on the representative data from CNP300 NPP.

5. The training and testing error derived from using the distributed
SVM modules is an improvement over other data-mining algo-
rithms suggested in the cited journals, and the diagnostic sys-
tem can be integrated into NPP human-machine interface to
support operators in decision making.

We acknowledge that currently, sensor placements in the
operating plants may not be suitable for obtaining appropriate
parameters for each unit of the diagnostic models. Also, since
redundancy in the safety-critical system is a valuable attribute in
NPP, further research is required to determine the suitable di-
agnostics models and techniques to create a hybrid FDI system to
fulfill redundancy requirement. In our future publication, we will
address these issues, discuss the full implementation of themethod
in all units of an operating NPP and propose the modalities for its
integration into the operator support system Human Machine
Interface (HMI).
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