• Title/Summary/Keyword: Detection Model based on classification

Search Result 379, Processing Time 0.027 seconds

CNN-based Android Malware Detection Using Reduced Feature Set

  • Kim, Dong-Min;Lee, Soo-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • The performance of deep learning-based malware detection and classification models depends largely on how to construct a feature set to be applied to training. In this paper, we propose an approach to select the optimal feature set to maximize detection performance for CNN-based Android malware detection. The features to be included in the feature set were selected through the Chi-Square test algorithm, which is widely used for feature selection in machine learning and deep learning. To validate the proposed approach, the CNN model was trained using 36 characteristics selected for the CICANDMAL2017 dataset and then the malware detection performance was measured. As a result, 99.99% of Accuracy was achieved in binary classification and 98.55% in multiclass classification.

Knowledge Distillation Based Continual Learning for PCB Part Detection (PCB 부품 검출을 위한 Knowledge Distillation 기반 Continual Learning)

  • Gang, Su Myung;Chung, Daewon;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.868-879
    • /
    • 2021
  • PCB (Printed Circuit Board) inspection using a deep learning model requires a large amount of data and storage. When the amount of stored data increases, problems such as learning time and insufficient storage space occur. In this study, the existing object detection model is changed to a continual learning model to enable the recognition and classification of PCB components that are constantly increasing. By changing the structure of the object detection model to a knowledge distillation model, we propose a method that allows knowledge distillation of information on existing classified parts while simultaneously learning information on new components. In classification scenario, the transfer learning model result is 75.9%, and the continual learning model proposed in this study shows 90.7%.

Detection of Pathological Voice Using Linear Discriminant Analysis

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • MALSORI
    • /
    • no.64
    • /
    • pp.77-88
    • /
    • 2007
  • Nowadays, mel-frequency cesptral coefficients (MFCCs) and Gaussian mixture models (GMMs) are used for the pathological voice detection. This paper suggests a method to improve the performance of the pathological/normal voice classification based on the MFCC-based GMM. We analyze the characteristics of the mel frequency-based filterbank energies using the fisher discriminant ratio (FDR). And the feature vectors through the linear discriminant analysis (LDA) transformation of the filterbank energies (FBE) and the MFCCs are implemented. An accuracy is measured by the GMM classifier. This paper shows that the FBE LDA-based GMM is a sufficiently distinct method for the pathological/normal voice classification, with a 96.6% classification performance rate. The proposed method shows better performance than the MFCC-based GMM with noticeable improvement of 54.05% in terms of error reduction.

  • PDF

Application of Wavelet-Based RF Fingerprinting to Enhance Wireless Network Security

  • Klein, Randall W.;Temple, Michael A.;Mendenhall, Michael J.
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.544-555
    • /
    • 2009
  • This work continues a trend of developments aimed at exploiting the physical layer of the open systems interconnection (OSI) model to enhance wireless network security. The goal is to augment activity occurring across other OSI layers and provide improved safeguards against unauthorized access. Relative to intrusion detection and anti-spoofing, this paper provides details for a proof-of-concept investigation involving "air monitor" applications where physical equipment constraints are not overly restrictive. In this case, RF fingerprinting is emerging as a viable security measure for providing device-specific identification (manufacturer, model, and/or serial number). RF fingerprint features can be extracted from various regions of collected bursts, the detection of which has been extensively researched. Given reliable burst detection, the near-term challenge is to find robust fingerprint features to improve device distinguishability. This is addressed here using wavelet domain (WD) RF fingerprinting based on dual-tree complex wavelet transform (DT-$\mathbb{C}WT$) features extracted from the non-transient preamble response of OFDM-based 802.11a signals. Intra-manufacturer classification performance is evaluated using four like-model Cisco devices with dissimilar serial numbers. WD fingerprinting effectiveness is demonstrated using Fisher-based multiple discriminant analysis (MDA) with maximum likelihood (ML) classification. The effects of varying channel SNR, burst detection error and dissimilar SNRs for MDA/ML training and classification are considered. Relative to time domain (TD) RF fingerprinting, WD fingerprinting with DT-$\mathbb{C}WT$ features emerged as the superior alternative for all scenarios at SNRs below 20 dB while achieving performance gains of up to 8 dB at 80% classification accuracy.

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF

A Video Smoke Detection Algorithm Based on Cascade Classification and Deep Learning

  • Nguyen, Manh Dung;Kim, Dongkeun;Ro, Soonghwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6018-6033
    • /
    • 2018
  • Fires are a common cause of catastrophic personal injuries and devastating property damage. Every year, many fires occur and threaten human lives and property around the world. Providing early important sign for early fire detection, and therefore the detection of smoke is always the first step in fire-alarm systems. In this paper we propose an automatic smoke detection system built on camera surveillance and image processing technologies. The key features used in our algorithm are to detect and track smoke as moving objects and distinguish smoke from non-smoke objects using a convolutional neural network (CNN) model for cascade classification. The results of our experiment, in comparison with those of some earlier studies, show that the proposed algorithm is very effective not only in detecting smoke, but also in reducing false positives.

Skeleton Model-Based Unsafe Behaviors Detection at a Construction Site Scaffold

  • Nguyen, Truong Linh;Tran, Si Van-Tien;Bao, Quy Lan;Lee, Doyeob;Oh, Myoungho;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.361-369
    • /
    • 2022
  • Unsafe actions and behaviors of workers cause most accidents at construction sites. Nowadays, occupational safety is a top priority at construction sites. However, this problem often requires money and effort from investors or construction owners. Therefore, decreasing the accidents rates of workers and saving monitoring costs for contractors is necessary at construction sites. This study proposes an unsafe behavior detection method based on a skeleton model to classify three common unsafe behaviors on the scaffold: climbing, jumping, and running. First, the OpenPose method is used to obtain the workers' key points. Second, all skeleton datasets are aggregated from the temporary size. Third, the key point dataset becomes the input of the action classification model. The method is effective, with an accuracy rate of 89.6% precision and 90.5% recall of unsafe actions correctly detected in the experiment.

  • PDF

A Risk Classification Based Approach for Android Malware Detection

  • Ye, Yilin;Wu, Lifa;Hong, Zheng;Huang, Kangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.959-981
    • /
    • 2017
  • Existing Android malware detection approaches mostly have concentrated on superficial features such as requested or used permissions, which can't reflect the essential differences between benign apps and malware. In this paper, we propose a quantitative calculation model of application risks based on the key observation that the essential differences between benign apps and malware actually lie in the way how permissions are used, or rather the way how their corresponding permission methods are used. Specifically, we employ a fine-grained analysis on Android application risks. We firstly classify application risks into five specific categories and then introduce comprehensive risk, which is computed based on the former five, to describe the overall risk of an application. Given that users' risk preference and risk-bearing ability are naturally fuzzy, we design and implement a fuzzy logic system to calculate the comprehensive risk. On the basis of the quantitative calculation model, we propose a risk classification based approach for Android malware detection. The experiments show that our approach can achieve high accuracy with a low false positive rate using the RandomForest algorithm.

Adversarial Example Detection and Classification Model Based on the Class Predicted by Deep Learning Model (데이터 예측 클래스 기반 적대적 공격 탐지 및 분류 모델)

  • Ko, Eun-na-rae;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1227-1236
    • /
    • 2021
  • Adversarial attack, one of the attacks on deep learning classification model, is attack that add indistinguishable perturbations to input data and cause deep learning classification model to misclassify the input data. There are various adversarial attack algorithms. Accordingly, many studies have been conducted to detect adversarial attack but few studies have been conducted to classify what adversarial attack algorithms to generate adversarial input. if adversarial attacks can be classified, more robust deep learning classification model can be established by analyzing differences between attacks. In this paper, we proposed a model that detects and classifies adversarial attacks by constructing a random forest classification model with input features extracted from a target deep learning model. In feature extraction, feature is extracted from a output value of hidden layer based on class predicted by the target deep learning model. Through Experiments the model proposed has shown 3.02% accuracy on clean data, 0.80% accuracy on adversarial data higher than the result of pre-existing studies and classify new adversarial attack that was not classified in pre-existing studies.