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Application of Wavelet-Based RF Fingerprinting
to Enhance Wireless Network Security

Randall W. Klein, Michael A. Temple, and Michael J. Mendenhall

Abstract: This work continues a trend of developments aimed
at exploiting the physical layer of the open systems interconnec-
tion (OSI) model to enhance wireless network security. The goal
is to augment activity occurring across other OSI layers and pro-
vide improved safeguards against unauthorized access. Relative
to intrusion detection and anti-spoofing, this paper provides de-
tails for a proof-of-concept investigation involving “air monitor”
applications where physical equipment constraints are not overly
restrictive. In this case, RF fingerprinting is emerging as a vi-
able security measure for providing device-specific identification
(manufacturer, model, and/or serial number). RF fingerprint fea-
tures can be extracted from various regions of collected bursts,
the detection of which has been extensively researched. Given re-
liable burst detection, the near-term challenge is to find robust fin-
gerprint features to improve device distinguishability. This is ad-
dressed here using wavelet domain (WD) RF fingerprinting based
on dual-tree complex wavelet transform (DT-CWT) features ex-
tracted from the non-transient preamble response of OFDM-based
802.11a signals. Intra-manufacturer classification performance is
evaluated using four like-model Cisco devices with dissimilar se-
rial numbers. WD fingerprinting effectiveness is demonstrated us-
ing Fisher-based multiple discriminant analysis (MDA) with max-
imum likelihood (ML) classification. The effects of varying chan-
nel SNR, burst detection error and dissimilar SNRs for MDA/ML
training and classification are considered. Relative to time domain
(TD) RF fingerprinting, WD fingerprinting with DT-CWT features
emerged as the superior alternative for all scenarios at SNRs below
20 dB while achieving performance gains of up to 8 dB at 80% clas-
sification accuracy.

Index Terms: Complex wavelet transform (CWT), dual-tree, in-
trusion detection, multiple discriminant analysis (MDA), physical
layer, RF fingerprinting, wavelet transform, wireless security.

I. INTRODUCTION

The work in [1]–[3] is representative of research that has been
conducted to address network safeguards spanning the applica-
tion and data link layers of the open systems interconnection
(OSI) model. There has also been significant earlier work [4]–
[10] and more recent work [11]–[16] where researchers have
focused on the OSI physical (PHY) layer to exploit inherent
RF features that are device dependent and difficult for unautho-
rized users to replicate. The methods employed for these PHY-
based approaches is as varied as the signal attributes they have
exploited. That is, there are differences in 1) operational stan-
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dards (802.11 and 802.15) which dictate different signal modu-
lations (DSSS, OFDM, etc.), 2) signal regions exploited (tran-
sient and non-transient), 3) collection system capability (band-
width, sample rate, collection interval, etc.), and 4) experimental
set-up and/or environmental conditions (anechoic chamber, typ-
ical office, etc.). These differences collectively impact the de-
gree to which inherent RF features will vary and make PHY-
based security much more challenging than other bit-level ap-
proaches being considered in other OSI model layers. Further-
more, these differences make it very difficult to perform reliable
quantitative cross-comparison of PHY-based methods being in-
vestigated. Thus, a brief discussion follows on activities that are
most related to the work presented here to enable proper assess-
ment of the proof-of-concept investigation.

The statistics of power-based received signal strength (RSS)
measurements have been considered and provide some anti-
spoofing protection based on PHY layer attributes [11], [12].
While the authors in [12] dismiss RF fingerprinting as a viable
alternative for “scale” reasons, it remains a viable alternative for
less constrained air monitoring applications and has been suc-
cessfully demonstrated using transient responses from DSSS-
based IEEE 802.15 compliant signals [13], [16] and with non-
transient responses from OFDM-based IEEE 802.11 compliant
signals [14], [15]. The works in [13]–[16] do use a common
Fisher-based approach for feature generation and/or device dis-
crimination. Collectively, these earlier works have shown that
inherent signal features can be used to form RF fingerprints that
are repeatedly extractable and sufficiently unique to enable de-
vice specific identification, to include distinguishing between
manufacturers, model numbers and/or serial numbers.

Signal structure uniqueness is generally attributable to differ-
ences in device manufacturing processes, component tolerances,
material properties and environmental factors [3], [4], [10]. If
sufficiently unique, this structure may be exploited to uniquely
identify devices based on their RF fingerprints. Burst detection
is arguably the most important step in the fingerprinting pro-
cess and has been extensively researched [6], [8], [17], [18].
Subsequent signal region(s) selection for fingerprint extraction
is of near equal importance given that fingerprint robustness is
desired amidst burst detection error and imprudent signal region
selection can adversely bias processing in favor of channel noise
or undesired signal features [4]. Fingerprint classification sen-
sitivity to burst detection error and channel noise variation has
been previously addressed for 802.11a signals [14], [15], [17],
[18]. These works showed that variance trajectory (VT) burst
detection enables classification performance that is consistent
with “perfect” burst estimation and that denoising low SNR sig-
nals with a dual-tree complex wavelet transform (DT-CWT) en-
hanced overall performance.
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Given demonstrated detection capability, the near-term chal-
lenge is to improve classification performance by finding im-
proved fingerprint features. This challenge is addressed here us-
ing wavelet domain (WD) RF fingerprinting based on DT-CWT
features. The impact of using WD fingerprints is first addressed
using “perfect” burst estimation and Fisher-based multiple dis-
criminant analysis (MDA) with maximum likelihood (ML) clas-
sification. Earlier work in [14], [15], [17], [18] addressed inter-
manufacturer device discrimination using time domain (TD)
fingerprinting with experimentally collected 802.11a signals
from Cisco and Dell devices. The work presented here addresses
a fundamentally more difficult problem, i.e., intra-manufacturer
(serial number) discrimination using identical model devices
manufactured by Cisco.

The choice of using OFDM-based signals for a proof-of-
concept investigation, and specifically the 802.11a signal, was
driven by several important factors, including: 1) Consistency
with previous related work [14], [15], [17], [19]–[21], 2) the
ability to directly compare TD processing and results from some
of these earlier works with new WD results, and 3) the contin-
ued emergence of OFDM-based signals as envisioned for future
4G software defined/cognitive radio (SDR/CR) communications
[22]–[24]. While the fingerprint and classification techniques
used here are likely applicable to other signal types, and may
actually perform better with some of them, the challenges posed
by OFDM-based signals must be addressed.

II. BACKGROUND

A. RF Fingerprint Classification

There has been considerable work in previous years involv-
ing the exploitation of RF signal characteristics to classify sig-
nals and identify the devices producing them [4], [6]–[8], [14],
[15]. Collectively, these works embody the field of RF finger-
print classification which fundamentally requires two processes,
including: 1) Fingerprint generation and 2) fingerprint classifi-
cation. Fingerprint generation requires the selection and extrac-
tion of features that enable signal/device discrimination. Desir-
able properties of the selected feature set include: 1) Reduced di-
mensionality to minimize processing and storage requirements,
2) intra-device repeatability, and 3) inter-device uniqueness. For
this work, the classification features are statistics of instan-
taneous signal characteristics per the details provided in Sec-
tions II-A.1 and II-A.2. The resultant RF statistical fingerprints
are then used for signal/device classification per the details pro-
vided in Section II-A.3.

A.1 Fundamental Signal Characteristics

Various signal characteristics can be exploited to provide de-
vice identification, with some of the earlier works predomi-
nantly focusing on instantaneous amplitude and instantaneous
phase [4], [6]–[8]. More recently, subsequent research has suc-
cessfully exploited instantaneous frequency as well [14], [15],
[17], [18]. A complex sampled time domain (TD) signal of the
form

sTD(n) = ITD(n) + jQTD(n) (1)

has instantaneous amplitude, a(n), phase, φ(n), and frequency,
f(n), characteristics given by

a (n) =
√
I2TD (n) +Q2

TD (n), (2)

φ (n) = tan−1

[
QTD (n)

ITD (n)

]
, (3)

f(n) =
1

2π

φ(n)− φ(n− 1)

Δn
(4)

where ITD(n) and QTD(n) are the instantaneous in-phase and
quadrature-phase components of sTD(n).

In practice, each characteristic response is “centered” (mean
removed) to remove collection system biases that may unduly
influence subsequent processing. The instantaneous amplitude
and frequency responses are simply centered using

ac(n) = a(n)− μa, (5)

fc(n) = f(n)− μf (6)

where n = 1, 2, · · ·, NM , NM is the total number of samples
in the collected signal, and μa and μf are amplitude and fre-
quency means calculated across NM samples of (2) and (4), re-
spectively.

Given the phase response in (3), a linear component is first
removed prior to centering. This component may be due to col-
lection receiver coloration or result from inexact frequency es-
timation during post-collection down-conversion. The resultant
non-linear phase response is given by

φnl(n) = φ(n)− 2πμf (n)Δt (7)

where μf is the same frequency mean used in (6) and Δt is the
time sample spacing. As a final step, the mean of φnl is removed
to yield the desired centered non-linear phase which is given by

φcnl(n) = φnl(n)− μφnl
(8)

where μφnl
is the mean across NM samples of φnl(n) in (7).

The centering of signal characteristics in (5)–(8) is consistent
with previous device classification work that successfully em-
ployed similar procedures [14], [15], [17], [18].

A.2 Basic Statistical Features

Direct use of the fundamental signal characteristics in Sec-
tion II-A.1 as classification features can be prohibitive in terms
of data storage and computational processing time. The compu-
tational burden can be eased by reducing the feature space di-
mensionality used for device classification. This approach was
used in [14], [15], [17], and [18] where the inherent statisti-
cal properties of the fundamental signal characteristics were ex-
ploited for device classification. The statistics of interest in this
earlier work included the variance (σ2), skewness (γ), and kur-
tosis (κ), defined as:

σ2
x =

1

Nx

Nx∑
k=1

[x(k)− x̄]
2
, (9)

γx =
1

σ3
xNx

Nx∑
k=1

[x(k)− x̄]
3
, (10)
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κx =
1

σ4
xNx

Nx∑
k=1

[x(k)− x̄]
4 (11)

where x̄ is the mean of {x(k)}. The final RF fingerprints are
formed by calculating these statistics for the appropriate cen-
tered instantaneous signal characteristic(s) in Section II-A.1,
i.e., setting {x(k)} equal to {ac(n)} with elements from (5),
setting {x(k)} equal to {fc(n)} with elements from (6), and/or
setting {x(k)} equal to {φcnl(n)} with elements from (8).

A.3 MDA/ML Classification

While many different techniques are available for classifica-
tion, they all employ two fundamental processes: Training and
classification. That is, they train the classifier using a subset of
the input data and then classify using the remaining data. For
the most part, these techniques are oblivious to what the input
data actually represents and their performance is predominantly
driven by the statistical behavior of the data. With regard to RF
fingerprint classification, there has been little novelty in devel-
oping specialized classification techniques and most researchers
have opted for well-known techniques. The predominant tech-
niques of choice have been based on neural networks [9], [20],
[25]–[31], with some limited additional work based on Kalman
filtering and/or a Hotelling statistic [32], [33].

Multiple discriminant analysis (MDA) with maximum likeli-
hood (ML) estimation is a viable classification alternative that
has been successfully used for TD RF fingerprint classifica-
tion [15], [17], [18]. MDA is an extension of Fisher’s linear dis-
criminant (FLD) process for more than two classes [35]. For a
3-class problem, the Fisher-based MDA process projects higher-
dimensional data onto a 2-dimensional “Fisher plane” that max-
imizes inter-class distances while simultaneously minimizing
intra-class distances. In principle, this method cannot improve
classification potential. However, it provides good class sep-
aration and visualization of data having input dimensionality
greater than three. Using this lower-dimensional data, decision
boundaries calculated from ML distributions are determined as-
suming normally distributed input data, equal costs and uniform
prior probabilities. In general, to discriminate c classes using d-
dimensional input data, the input vector x is linearly projected
onto a (d− 1)-dimensional space using

y = WTx (12)

where y is the vector of projected values and W is a d× (c− 1)
projection matrix. Classification is performed using unknown
data and the trained 2-dimensional decision boundaries calcu-
lated from ML distributions. The process classifies each “un-
known” input data set by projecting it onto the trained Fisher
plane according to (12). Projected points falling within the cor-
rect region are correctly classified while those falling outside the
correct region are misclassified. The percentage of correct clas-
sification is determined based on the total number of unknown
trials. A more complete description of the MDA/ML process is
provided in [36].

B. Dual-Tree Complex Wavelet Transform (DT-CWT)

Device classification can be performed using a discrete
wavelet transform (DWT), with one popular method using a

subset of the largest DWT coefficient magnitudes as the classi-
fication features [37]. One distinct disadvantage of DWT-based
approaches is that the DWT is not shift invariant. As with signal
denoising, this presents a problem for RF fingerprinting appli-
cations given that robust classification performance relies on the
fingerprint features being unique, repeatable and stable. These
properties cannot be assured if the underlying features (DWT
coefficients) vary dramatically throughout the processing inter-
val of interest. For example, variation in burst detection and start
location error generally translates to greater variation in finger-
print features. The DT-CWT is used to address the lack of shift
invariance in DWT processing.

The DT-CWT is a DWT extension that is “nearly shift-
invariant,” i.e., the DT-CWT coefficients are independent of
time domain shift and more strongly dependent on interscale and
intrascale neighborhoods [38]. This shift invariance has been
previously exploited to improve classification performance for
hyperspectral images [39]. Furthermore, the DT-CWT magni-
tude response exhibits reduced ringing that is generally induced
by high-frequency noise and sharp discontinuities [38].

The DT-CWT is commonly implemented using two real-
valued filter banks. These are denoted as Tree1 and Tree2
in Fig. 1 which shows one common architecture for DT-CWT
implementation [34]. The scaling and wavelet functions for
Tree1 are symmetric (even functions) while Tree2 has scaling
and wavelet functions that are anti-symmetric (odd functions).
The wavelet and scaling functions, ψ(t) and φ(t) respectively,
for the Tree1 filter bank are given by [34], [38]

ψ(t) =
√
2
∑
n

h1(n)φ(2t− n), (13)

φ(t) =
√
2
∑
n

h0(n)φ(2t− n) (14)

where the filter coefficients h1(n) and h0(n) are implemented
directly as the analysis filters (AF) given in [40]. Ideally, the
corresponding functions for the Tree2 filter bank are the Hilbert
transforms of (13) and (14), expressed as

ψ′(t) =
√
2
∑
n

h′1(n)φ
′(2t− n), (15)

φ′(t) =
√
2
∑
n

h′0(n)φ
′(2t− n) (16)

where the filter coefficients h′1(n) and h′0(n) are implemented
directly as the analysis filters (AF) given in [40]. As shown in
Fig. 1, the first stage filters for both Tree1 and Tree2 have dif-
ferent coefficients when compared to the later stage filters and
are denoted as h(1)1 (n), h(1)0 (n), h′(1)1 (n), and h′(1)0 (n), respec-
tively. The first stage filter coefficients are implemented directly
as the first analysis filters (FAF) given in [40].

For real-valued input signals, the filter bank outputs in Fig. 1
are real-valued wavelet domain (WD) coefficients representing
real (I lWD) and imaginary (Ql

WD) components of complex co-
efficients [38]. These components can be functionally combined
in a form similar to (1) and expressed as

slWD(n) = I lWD(n) + jQl
WD(n) . (17)
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Fig. 1. Four stage (five level) dual-tree complex wavelet transform (DT-CWT) [34].

Using slWD(n) elements from (17), the sequence {sWD(n)} of
all elements can be interpreted as what may be called a “com-
plex sampled WD signal.” Given the similar structure of this
WD signal and the TD signal in (1), WD fingerprint classifica-
tion can be performed using the process in Sec. II-A. In this
case, the WD signal in (17) can be used in (2)–(8) to generate
WD signal characteristics and statistics calculated per (9)–(11)
to form statistical WD fingerprints.

III. METHODOLOGY

A. Overall Demonstration Process

All results presented in Section IV were generated using the
overall demonstration process illustrated in Fig. 2. The dashed
boundaries delineate primary hardware and software processes.
The “Signal Collection” hardware process consisted of plac-
ing communication devices (source and destination laptops with
802.11a PCMCIA cards) and the agilent-based RF signal inter-
cept and collection system (RFSICS) in a chamber and mak-
ing free-space signal collections. The collected signal data (a
series of complex valued samples) was passed along for subse-
quent Post-Collection Processing which was accomplished ex-
clusively in a MATLAB� environment. The implementation
and functionality of various processes in Fig. 2 are discussed
in the following sections.

B. Signal Collection Process

Collections were made with the source laptop (containing the
device under test), destination laptop and the RFSICS in an ane-
choic chamber. Chamber collections were specifically chosen
for proof-of-concept investigation to help isolate device specific
hardware effects from channel/propagation effects and thereby
enable appropriate attribution of classification differences to de-
vice differences. Thus, the collections included minimal to no
multipath propagation effects and the impact of varying source-
to-destination distance (range) is adequately captured and incor-
porated through SNR variation.

A given device under test (Cisco PCMCIA card) was placed

Fig. 2. Overall process for signal collection, analysis signal generation,
burst detection and start location, fingerprint extraction, and classifi-
cation.

in the source laptop and a continuous file transfer initiated be-
tween it and the destination laptop. The destination laptop was
configured such that it transmitted at minimum power to enable
reliable post-collection separation of desired source and unde-
sired destination bursts. For subsequent collections, the posi-
tions and orientations of the laptops and RFSICS were main-
tained and alternate devices inserted into the source laptop.

Basic RFSICS functionality is provided by Agilent’s E3238S
system [41] and includes an RF collection range of 20.0 MHz to
6.0 GHz. The band of interest is selected using a tunable RF fil-
ter with fixed bandwidth of 36.0 MHz. The selected RF band is
down-converted to an intermediate frequency (IF) of 70.0 MHz
and passed to a digitizer. The digitizing process consists of
down-conversion (near baseband), 12-bit analog-to-digital con-
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version at 95 M samples-per-second (sps), digital filtering (user
defined bandwidth), Nyquist compliant sub-sampling, and data
storage as complex in-phase (I) and quadrature (Q) components.
A digital filter bandwidth of 18.56 MHz was selected for all
802.11a signals collected for this work. This resulted in the RF-
SICS automatically applying a sub-sampling factor of four, for
a final sample rate of fs = 23.75 Msps and corresponding sam-
ple interval of Ts = 1/fs ≈ 42.1 nsec per sample. The typical
collected SNR for the chamber collected signals is on the order
of SNR = 40 dB.

C. Post-Collection Processing

C.1 Analysis Signal Generation

The first post-collection process of “perfect” burst extrac-
tion uses the near-baseband, complex I-Q data from the RF-
SICS collections. Extraction is accomplished through a combi-
nation of automated amplitude threshold detection followed by
visual analysis and manual alignment to accurately identify the
sample number corresponding to the burst start. The extracted
burst responses are digitally filtered using a baseband filter and
power-normalized. A 6th-order Chebyshev digital filter was im-
plemented having a –3 dB bandwidth of 7.7 MHz. This band-
width was experimentally chosen as it provided a maximum ob-
served classification performance for TD fingerprints but a near-
maximum performance for WD fingerprints, ensuring a bias to-
wards the TD technique. This particular bandwidth choice gives
the TD technique an approximate 2% advantage in device clas-
sification. This will be considered when presenting, comparing
and analyzing subsequent results.

At this point, the sample frequency of the filtered signal is
fs = 23.75 Msps which effectively represent oversampling by
a factor of approximately 1.5 times Nyquist. Provided that the
RFSICS collection and subsequent post-processing is identical
for all signals, it is reasonable to assume that “recording col-
oration” (variation in amplitude, phase and/or frequency char-
acteristics) induced by the RFSICS and post-processing prior to
burst start location, statistical fingerprint generation and signal
classification is approximately identical. This is important in the
overall process and ensures that final results are based on as re-
ceived signal characteristics and features versus being unduly
influenced by signal-dependent collection and post-processing
coloration.

The desired “analysis signal” is intended to simulate varying
SNR conditions that typically exist in an operational environ-
ment and is analogous to varying collection range and/or simu-
lating intentional/unintentional jamming. This signal is gener-
ated by adding like-filtered, power-scaled noise to the digitally
filtered, power-normalized signal. This is done by generating
random complex AWGN that is filtered using the same digi-
tal filter as used for the signal. The filtered noise signal is then
power-scaled to achieve the desired analysis SNR when added
to the filtered signal.

C.2 Burst Detection and Start Location

To isolate the effects of using different feature sets from the
effects of burst detection and location error, the RF bursts were
visually detected and their “perfect” starting location (sample

number) determined. This number was used to locate the pream-
ble region for fingerprint extraction.

To further investigate TD and WD feature sensitivity to burst
detection error, a random error was introduced into the perfect
starting locations on a burst-by-burst basis by comparing sample
numbers of the -3 dB threshold detected bursts and the corre-
sponding manually detected perfect bursts. This produces what
is referred to here as randomly “jittered” burst detection data. In
this case, this error was generated using statistics from the his-
togrammed observed location error. Based on statistics (mean,
standard deviation, skewness, and kurtosis), a four-parameter
discrete Beta distribution generator was created to provide sim-
ulated detection error similar to what was observed. The random
jitter error was applied to perfect burst location data prior to ex-
tracting the fingerprints used for both training and classification.
This was functionally implemented in Step 2 of the classifica-
tion process described in Section III-D.

C.3 Statistical Fingerprint Generation

Following burst detection and start location, the RF statistical
fingerprints are generated using the process shown in Fig. 3. As
indicated within the dashed lines, the Characteristics and Statis-
tics generating functions are identical for both the time domain
(TD) and wavelet domain (WD) techniques. A signal region of
interest is selected from the input analysis signal and parsed
into a predefined number of subregions for fingerprint genera-
tion. As illustrated in Fig. 4, the region of interest here is the
802.11a preamble response which is parsed into Nr = 3 sub-
regions. This choice was based on 1) previous works which suc-
cessfully exploited the preamble [14], [15], and 2) the preamble
bit sequence being identical for all bursts per the 802.11 stan-
dard [42]. Fig. 4 shows that the standard modulated preamble
response is comprised of 10 short and 2 long OFDM symbols.
Fingerprint features were extracted from three different defined
regions that included: 1) The first 8.0 μsec (10 short OFDM
symbols), 2) the last 8.0 μsec (2 long OFDM symbols), and
3) the entire 16.0 μsec preamble (all short and long symbols).

For TD classification, the centered subregion characteristics
are calculated using (2)–(8) and statistical classification features
calculated using (9), (10), and (11) for each resultant character-
istic response. The resultant TD RF fingerprint (feature vector)
consists of 27 total features per collected burst (3 subregions ×
3 signal characteristics × 3 statistics). The TD fingerprint for
burst b, from device (class) c, in subregion r is given by

Fb,c
r = [ σ2

r(a), σ
2
r(φ), σ

2
r(f),

γr(a), γr(φ), γr(f), (18)

κr(a), κr(φ), κr(f) ]

where b = 1, 2, · · ·, Nb (Nb total bursts), r = 1, 2, · · ·, Nr (Nr

total subregions), and c = 1, 2, 3 is the class index. Consider-
ing Nr = 3 subregions as used here, the composite TD feature
vector (1× 27) is formed using (18) and given by

Fb,c
TD =

[
Fb,c

1 Fb,c
2 Fb,c

3

]
. (19)

For WD classification, the processing is identical to TD pro-
cessing except that a DT-CWT decomposition is performed in
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Fig. 3. Generation process for statistical RF fingerprints. The charac-
teristics and statistics generating functions are identical for both the
TD and WD techniques and implemented using (2)–(8) and (9)–(11),
respectively [18].

Fig. 4. 802.11a preamble response showing fingerprint regions.

each subregion. As depicted in Fig. 1, the DT-CWT decomposes
each subregion into five levels associated with different wavelet
scales. The “complex WD signal” samples are calculated using
(17), followed by characteristic generation and centering using
(2)–(8). The statistical classification features are calculated us-
ing (9), (10), and (11). The resultant WD RF fingerprint (feature
vector) consists of 135 total features per collected burst (3 sub-
regions × 5 DT-CWT decomposition levels per subregion × 3
signal characteristics × 3 statistics). Paralleling the TD develop-
ment, the WD fingerprint for burst b, from device c, in subregion
r which has been decomposed into l DT-CWT levels is given by

Fb,c
r,l = [ σ2

r,l(a), σ
2
r,l(φ), σ

2
r,l(f),

γr,l(a), γr,l(φ), γr,l(f), (20)

κr,l(a), κr,l(φ), κr,l(f) ]

where l = 1, 2, · · ·, Nl with Nl being the total number of DT-
CWT decomposition levels per subregion. Considering Nr = 3
subregions with Nl = 5 levels as used here, the composite WD
classification feature vector (1 × 135) is formed using (20) and

Table 1. Cisco device serial numbers and permutations

used for MDA/ML classification.

Serial number
Perm N4U9 N4UD N4UW N4PX

1 × × ×
2 × × ×
3 × × ×
4 × × ×

is given by

Fb,c
WD =

[
Fb,c

1,1 Fb,c
1,2 Fb,c

1,3 Fb,c
1,4 Fb,c

1,5

Fb,c
2,1 Fb,c

2,2 Fb,c
2,3 Fb,c

2,4 Fb,c
2,5 (21)

Fb,c
3,1 Fb,c

3,2 Fb,c
3,3 Fb,c

3,4 Fb,c
3,5

]
.

The uniqueness of fingerprint statistical features can be il-
lustrated using so called “distinct native attributes” (DNA) in
RF DNA Fingerprint plots such as shown in Fig. 5. These plots
were generated by randomly selecting 250 collected bursts for
each device, scaling them to achieve SNR = 20 dB, and averag-
ing the corresponding statistical fingerprints from (19) or (21) as
appropriate. For visual clarity, the average fingerprint features
are normalized within each of the nine segments (3 signal char-
acteristics × 3 statistics). Each TD fingerprint segment includes
3 markers (one for each signal subregion shown in Fig. 4). Each
WD fingerprint segment includes 15 markers (3 signal subre-
gions × 5 DT-CWT levels). Given that normalization has been
applied within markers, caution must be exercised when com-
paring 1) across TD and WD responses in Fig. 5, and 2) across
markers of a given device for a given technique. It is reasonable
to compare behavior across devices using a given technique and
a given marker. In this case, the cross-device differences are
indicative of potential discriminability with greater differences
corresponding to increased class separability using MDA/ML
processing.

D. MDA/ML Signal Classification

Device classification is performed using statistical finger-
prints with the Fisher-based MDA/ML process described in Sec-
tion II-A.3. For all MDA/ML classification results presented, a
total of Nb = 2000 bursts were used from Nd = 3 different
Cisco devices according to the permutations in Table 1. For each
permutation in Table 1, Nb = 2000 fingerprints for each device
were used to form a composite fingerprint matrix for MDA/ML
classification. Each row of the composite matrix represents one
statistical fingerprint generated using (19) for TD fingerprinting
or (21) for WD fingerprinting. Thus, the resultant composite
fingerprint matrix for each device has dimension 2000 × 27 for
TD fingerprinting and 2000× 135 for WD fingerprinting.

Monte Carlo simulation and K-fold cross validation pro-
cesses are used with MDA/ML signal classification. Monte
Carlo simulation is used to ensure statistical significance and
K-fold cross validation is used to generalize the prediction er-
ror to an independent data set [43]. While the required value of
K can vary as a function of data “behavior,” values of K = 5
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Fig. 5. Average RF DNA fingerprints for (a) TD (27-Feature TD finger-
printing) and (b) WD processing based on 250 randomly selected
bursts at SNR = 20 dB (135-Feature WD fingerprinting).

and K = 10 are common choices for cross validation [43]. Us-
ing K = 5 with Nb = 2000 bursts (fingerprints) per device,
the input fingerprints are partitioned into K = 5 equal subsets
(400 each), with K − 1 = 4 subsets (1600 fingerprints) used for
training and the remaining “held-out” subset (400 fingerprints)
used for classification [43].

The overall process for MDA/ML classification with K-fold
cross validation is shown in Fig. 6. Accounting for a total of
NMC independent Monte Carlo noise realizations, the process
for generating average classification results includes the follow-
ing steps. Note that the Fold Iteration Accumulator in Fig. 6 is
cleared prior to the start of this process.

1. Generating the analysis signal for a given SNR per Sec-
tion III-C.1

2. Performing burst detection and start location per Sec-
tion III-C.2

3. Generating statistical fingerprints per Section III-C.3 for
the technique under evaluation (TD or WD)

4. Generating projection matrix W per (12) using K − 1 =
4 subsets (80% of the fingerprints) from each device for
training and ML classifier parameter calculation

Fig. 6. MDA/ML classification process with K-fold cross validation.

5. Transforming the “held-out” subset (20% of the finger-
prints) from each device as “unknown” inputs using W
and classifying each per ML criteria

6. Accumulating the current fold classification results
7. Selecting the next K − 1 = 4 blocks for the next fold
8. Repeating Step 4–Step 7 for K − 1 = 4 additional folds
9. Repeating Step 1–Step 8 a total of NMC times using dif-

ferent independent AWGN realizations for each iteration
(fold iteration accumulator not cleared)

10. Averaging fold iteration accumulator results to obtain av-
erage classification performance (Accounting for all fac-
tors, the final average is based on a total ofNMC ×Nb×3
independent classification decisions.)

11. Repeating the process for each desired analysis SNR

Representative MDA-transformed training fingerprints and
trained decision boundaries calculated from ML distributions
are shown in Fig. 7(a) for 802.11a signals at SNR = 40 dB. The
corresponding projection of “unknown” MDA-transformed fin-
gerprints are shown in Fig. 7(b) overlayed with trained decision
boundaries from Fig. 7(a). Note that even under these high SNR
conditions incorrect classification is possible. For example, one
of the Class C (∗ markers) fingerprints is clearly projected into
the Class A (× markers) ML decision region and would be in-
correctly classified.

Confidence intervals provide one means for declaring statis-
tically significant differences and/or similarities when compar-
ing alternatives, e.g., TD versus WD performance for a given
scenario. All comparative conclusions drawn in Section IV are
based on estimated classification accuracy p̂with CI = 95% con-
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(a)

(b)

Fig. 7. Representative MDA/ML (a) Training and (b) Classification for
802.11a signals at SNR = 40 dB: (a) MDA/ML training: ML decision
boundaries and (b) MDA/ML classification: Projected fingerprints.

fidence intervals given by [44]

CI = ± 1.96

√
p̂ (1− p̂)

Np
(22)

where p̂ is calculated as the number of correct classification
decision divided by Np independent trials. All results in Sec-
tion IV were generated using Nb = 2000 bursts per device and
NMC = 50 Monte Carlo iterations of the MDA/ML process.
Thus, there are a total of Np = 2000 × 50 = 100000 indepen-
dent classification decisions made per device, i.e., percentages
in each row of the MDA/ML classification confusion matrices
are based on 100000 trials. Note that resultant confidence inter-
vals for given scenarios are intentionally omitted from tabular
and plotted results in Section IV given that 1) they are not typi-
cally provided in confusion matrix representations (convention),
2) they are very small for a majority data points in a given sce-
nario and tend to obscure/blurr marker discrimination (visual
clarity), and 3) the focus of this work is on general revelation
and demonstration versus precise assessment for a particular set
of conditions and/or parameters (reliable trend analysis is suffi-

Table 2. Numerical CIs as a function of classification

accuracy p̂ based on Np = 100000 independent trials.

Classification ± CI
Accuracy p̂ (×103)

0.0 0.00
0.1 1.90
0.2 2.53
0.3 2.90
0.4 3.10
0.5 3.16
0.6 3.10
0.7 2.90
0.8 2.53
0.9 1.90
1.0 0.00

cient). For completeness, numerical CI values are provided in
Table 2 to enable detailed assessment if desired.

IV. RESULTS AND ANALYSIS

For comparative analysis, results were generated using TD
and WD fingerprints generated from identical collected signals
with identical Monte Carlo noise realizations that were appro-
priately filtered and scaled to achieve desired analysis SNRs.
This enables reliable one-to-one comparison of TD and WD
classification based on 1) CI = 95% confidence intervals and
2) a performance “gain” metric which is defined as the differ-
ence in required SNR (SNRdB

WD−SNRdB
TD) at a given classifi-

cation accuracy level. For tracking relative TD and WD perfor-
mance improvement and/or degradation, the performance gain
at 80% classification accuracy was arbitrarily chosen to illus-
trate trends across the various scenarios considered.

A. MDA/ML Device Classification

Serial number discrimination is demonstrated using all Cisco
device permutations in Table 1. Sensitivity to serial number vari-
ation is illustrated in Fig. 8 which shows average classification
results for all permutations. The mean across all four permuta-
tions is shown by the filled markers. The results for both TD and
WD techniques show that Permutation #1 and Permutation #3,
which both include Cisco devices with serial numbers N4U9
and N4UW, yield the poorest results for nearly all SNR val-
ues considered. Permutation #1 is the “most stressing” case for
MDA/ML classification and per Table 1 includes three devices
with serial numbers that differ in only the last digit. While not
verifiable, it is assumed that these devices have been manufac-
tured using identical components, from identical lots, with iden-
tical processes, under identical environmental conditions. Thus,
discriminating between these devices presents the most stressing
case for classification.

The mean classification results in Fig. 8 are presented again
in Fig. 9 for closer inspection. Based on CI = 95% confi-
dence intervals, both techniques perform statistically similar for
SNR ≥ 25 dB and the WD fingerprinting technique is superior
for −2 < SNR < 24 dB. The WD fingerprints achieve 80%
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Fig. 8. Average MDA/ML classification results for all Cisco device per-
mutations in Table 1. Mean across all permutations shown with filled
markers.

Fig. 9. Mean classification results from Fig. 8. Based on CI = 95%
confidence intervals, WD performance is superior for −2 < SNR <
24 dB.

classification accuracy at SNR ≈ 11 dB. This represents a gain
of approximately 7 dB with respect to equivalent TD fingerprint-
ing performance.

Classification confusion matrices are presented in Table 3 for
Permutation #1 of the Cisco devices for signals at SNR =
11 dB. Note that all values shown are statistically different based
on CI = 95% confidence intervals. As indicated in the lower
comparison matrix, WD fingerprinting provides improved clas-
sification performance across all three classes, with the greatest
improvement of 28.1% obtained in correctly classifying Class B.
One common result with both fingerprinting techniques is that
Class A and Class C devices are more confused with each other
and confused less often with Class B. With respect to the device
serial numbers, Class A and Class C are closer to each other than
either one is to Class B.

Table 3. Confusion matrices for TD and WD fingerprinting:

Permutation #1 from Table 1 at SNR = 11 dB. The WD – TD difference

matrix is provided for comparison.

TD Class Estimate
Input Class A B C

A 49.4% 17.3% 33.3%
B 18.5% 65.9% 15.6%
C 34.2% 12.1% 53.6%

WD Class Estimate
Input Class A B C

A 69.5% 5.9% 24.5%
B 5.3% 94.0% 0.7%
C 21.5% 1.3% 77.2%

WD – TD Class Estimate
Input Class A B C

A 20.1% -11.4% -8.8%
B -13.2% 28.1% -14.9%
C -12.7% -10.8% 23.6%

B. Relevant WD Features

Based on the number of classification features, the WD fin-
gerprints represent an approximate 5-fold increase in dimen-
sionality over TD fingerprints. Thus, it is reasonable to ask “Is
the superior WD performance in Section IV-A attributable to
increased feature dimensionality, more exploitable features, or
both?” To help address this question, results were generated
using a subset of 27 selected WD features from the larger 135-
feature WD fingerprints. The idea was to compare TD and WD
performance using an equivalent number of features.

The subset of WD features was selected using a general-
ized relevance learning vector quantization improved (GRLVQI)
classifier [39], [45], [46]. The GRLVQI classifier jointly selects
features and classifies in order to optimize features for classifica-
tion. During this process, the algorithm calculates and outputs
a relevance rating for each feature considered, indicating fea-
ture importance. The GRLVQI classifier was implemented in the
Waikato environment for knowledge analysis (WEKA) environ-
ment [47] using WD fingerprints from bursts at SNR = 40 dB.
The subset of 27 most relevant WD features is provided in Ta-
ble 4 which shows the relevance ranking (RR), corresponding
preamble subregion, WD level (WD LVL), signal characteristic
and statistic.

The subset of 27 WD features in Table 4 were used for
WD fingerprinting and performance compared with 27-feature
TD fingerprinting under the most stressing device Permuta-
tion #1. Based on CI = 95% confidence intervals, results
in Fig. 10 show that 27-feature WD fingerprinting is superior
for 0 < SNR < 20 dB and achieves 80% classification accuracy
at SNR ≈ 19 dB. This represents a performance gain of ap-
proximately 2 dB relative to 27-feature TD fingerprinting. Given
equal dimensionality, these results suggest a clear increase in ex-
ploitable DT-CWT feature information.
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Table 4. Subset of 27 most relevant WD features. Relevance

ranking (RR) based on GRLVQI classifier output.

RR Subregion WD Signal Statistic
Lvl Characteristic

1 Entire preamble 4 Amplitude Kurtosis
2 Short symbols 4 Amplitude Variance
3 Short symbols 5 Frequency Variance
4 Entire preamble 4 Amplitude Skewness
5 Short symbols 1 Amplitude Kurtosis
6 Entire preamble 5 Frequency Kurtosis
7 Short symbols 3 Amplitude Kurtosis
8 Long symbols 2 Phase Kurtosis
9 Entire preamble 3 Phase Kurtosis

10 Entire preamble 3 Phase Variance
11 Entire preamble 1 Frequency Variance
12 Short symbols 3 Amplitude Variance
13 Long symbols 2 Phase Skewness
14 Entire preamble 5 Amplitude Kurtosis
15 Entire preamble 4 Amplitude Variance
16 Entire preamble 3 Amplitude Kurtosis
17 Entire preamble 4 Frequency Kurtosis
18 Short symbols 1 Frequency Variance
19 Long symbols 1 Amplitude Kurtosis
20 Entire preamble 5 Phase Variance
21 Long symbols 5 Amplitude Variance
22 Short symbols 2 Amplitude Variance
23 Short symbols 4 Frequency Kurtosis
24 Entire preamble 1 Phase Variance
25 Entire preamble 3 Phase Variance
26 Long symbols 1 Phase Variance
27 Entire preamble 1 Phase Kurtosis

Fig. 10. MDA/ML classification for 27-feature TD and 27-feature WD
fingerprinting using most stressing device Permutation #1. Based
on CI = 95% confidence intervals, WD performance is superior for
0 < SNR < 20 dB.

C. Burst Detection Error

The effect of burst detection error is demonstrated for TD
and WD fingerprinting using random burst location error. This

Fig. 11. Average MDA/ML classification accuracy for serial number dis-
crimination using observed burst detection error statistics. Based on
CI = 95% confidence intervals, WD is superior and less sensitive to
detection error.

variation addresses operational situations where 1) dissimilar
equipment is used for collecting training and classification data,
2) equipment is not necessarily co-located, or 3) equipment is
operating in non-ideal environments. This type of error may also
be induced by laboratory equipment, the fidelity of which can
impact collected signal coloration and subsequent burst location
accuracy. The observed random jitter error was applied to the
perfect burst location data per Section III-C.2.

Serial number discrimination results for WD and TD finger-
printing are provided in Fig. 11 for device Permutation #2 us-
ing observed jitter statistics for detection error. Performance for
perfect detection is provided for comparison and shows that WD
fingerprinting is clearly more robust. Based on CI = 95% con-
fidence intervals, WD fingerprinting superiority is indicated in
three factors: 1) Jittered WD classification performance being
better than jittered TD performance for all −3 < SNR < 40 dB,
2) jittered gain at 80% classification accuracy being approx-
imately 2 dB better than non-jittered gain, and 3) the aver-
age degradation in classification performance (perfect minus jit-
tered) for a given technique across all SNRs is approximately
0.71% and 3.12% for WD and TD fingerprinting, respectively.

D. Dissimilar MDA/ML Training and Classification SNR

A fingerprinting comparison is made using dissimilar SNRs
for MDA/ML training and classification. Specifically, the MDA
training bursts were fixed at SNR = 40 dB while the SNR of ML
classification bursts varied over SNR ≤ 40 dB. These conditions
are representative of an air monitor being pre-trained in a high
SNR environment to recognize specific authorized devices and
then operating in an actual environment with varying channel
conditions, device locations, etc. The results presented are for
Permutation #1 in Table 1 and are representative of what was
obtained for other permutations.

Results in Fig. 12 are for serial number discrimination us-
ing both WD and TD fingerprinting with dissimilar SNRs for
MDA/ML training and classification. Relative to performance
using identical training and classification SNRs (filled mark-
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Fig. 12. Average MDA/ML classification accuracy for serial number dis-
crimination using SNR = 40 dB for MDA/ML training with subsequent
classification performed at the SNRs indicated.

ers), the WD technique experiences a decrease in accuracy for
all SNR < 30 dB while the TD technique actually performs
better at SNR > 18 dB and exhibits decreased performance at
SNR < 19 dB. Based on CI = 95% confidence intervals, WD
performance is superior for all SNR < 20 dB and achieves 80%
classification accuracy at SNR ≈ 19 dB. This represents a mod-
est gain of 1 dB with respect to equivalent TD fingerprinting per-
formance and is approximately 7 dB less when compared with
performance obtained when using identical SNRs for training
and classification (filled markers).

V. CONCLUSION

The near-term challenge for advancing RF fingerprinting in
wireless network security rests in finding robust fingerprint fea-
tures. This is addressed here using a dual-tree complex wavelet
transform (DT-CWT) and wavelet-based fingerprints. Wavelet
domain (WD) fingerprinting effectively exploits the nearly shift-
invariant property of the DT-CWT and provides improved clas-
sification relative to previous time domain (TD) approaches.
Given that reliable serial number discrimination is achieved for
802.11a signals under both perfect and observed burst detection
error conditions, RF fingerprinting remains a viable alternative
for less constrained air monitoring applications.

TD and WD fingerprinting were compared using Fisher-based
MDA/ML device classification under identical scenarios (device
combinations, SNR, etc.). Sensitivity to varying channel SNR,
dissimilar feature dimensionality, burst detection error and dis-
similar SNRs for MDA/ML training and classification was con-
sidered as well. For all scenarios and sensitivities analyzed, WD
fingerprinting emerged as the superior alternative for obtaining
robust serial number discrimination at SNRs below 20 dB, with
performance gains of up to 8 dB demonstrated at 80% classifi-
cation accuracy.

“The views expressed in this article are those of the author(s) and do not
reflect official policy of the United States Air Force, Department of Defense or
the U.S. Government.”
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