This mini review summarizes some of the recent advances in machine-learning (ML)-driven chemical and biological sensors. Specific focus is on field-effect-transistor (FET)-based sensors with a description of their structures and detection mechanisms. Key ML techniques are briefly reviewed for an audience not familiar with the basic principles. We mainly discuss two aspects: (1) data analysis based on ML and (2) ML applied to sensor design. In conclusion, the challenges and opportunities for the advancement of ML-based sensors are briefly considered.
Sensor network is a network for realizing the ubiquitous computing circumstances, which aggregates data by means of observation or detection deployed at the inaccessible places with the capacities of sensing and communication. To realize this circumstance, data which sensor nodes gathered from sensor networks are delivered to users, in which it is required to encrypt the data for the guarantee of secure communications. Therefore, it is needed to design key management scheme for encoding appropriate to the sensor nodes which feature continual data transfer, limited capacity of computation and storage and battery usage. We propose a key management scheme which is appropriate to sensor networks organizing hierarchical architecture. Because sensor nodes send data to their parent node, we can reduce routing energy. We assume that sensor nodes have different security levels by their levels in hierarchy. Our key management scheme provides different key establishment protocols according to the security levels of the sensor nodes. We reduce the number of sensor nodes which share the same key for encryption so that we reduce the damage by key exposure. Also, we propose key update protocols which take different terms for each level to update established keys efficiently for secure data encoding.
Background: Glioblastoma (GBM) is an immunosuppressive tumor whose median survival time is only 12-15 months, and patients with GBM have a uniformly poor prognosis. It is known that heredity contributes to formation of glioma, but there are few genetic studies concerning GBM. Materials and Methods: We genotyped six tagging SNPs (tSNP) in Han Chinese GBM and control patients. We used Microsoft Excel and SPSS 16.0 statistical package for statistical analysis and SNP Stats to test for associations between certain tSNPs and risk of GBM in five different models. ORs and 95%CIs were calculated for unconditional logistic-regression analysis with adjustment for age and gender. The SHEsis software platform was applied for analysis of linkage disequilibrium, haplotype construction, and genetic associations at polymorphism loci. Results: We found rs891835 in CCDC26 to be associated with GBM susceptibility at a level of p=0.009. The following genotypes of rs891835 were found to be associated with GBM risk in four different models of gene action: i) genotype GT (OR=2.26; 95%CI, 1.29-3.97; p=0.019) or GG (OR=1.33; 95%CI, 0.23-7.81; p=0.019) in the codominant model; ii) genotypes GT and GG (OR=2.18; 95%CI, 1.26-3.78; p=0.0061) in the dominant model; iii) GT (OR=2.24; 95%CI, 1.28-3.92; p=0.0053) in the overdominant model; iv) the allele G of rs891835 (OR=1.85; 95%CI, 1.14-3.00; p=0.015) in the additive model. In addition, "CG" and "CGGAG" were found by haplotype analysis to be associated with increased GBM risk. In contrast, genotype GG of CCDC26 rs6470745 was associated with decreased GBM risk (OR=0.34; 95%CI, 0.12-1.01; p=0.029) in the recessive model. Conclusions: Our results, combined with those from previous studies, suggest a potential genetic contribution of CCDC26 to GBM progression among Han Chinese.
In industrial IoT environments, sensors generate data for their detection targets and deliver the data to IoT gateways. Therefore, managing large amounts of real-time sensor data is an essential feature for IoT gateways, and key-value storage engines are widely used to manage these sensor data. However, key-value storage engines used in IoT gateways do not take into account the characteristics of sensor data generated in industrial IoT environments, and this limits the performance of key-value storage engines. In this paper, we optimize the key-value storage engine by utilizing the features of sensor data in industrial IoT environments. The proposed optimization technique is to analyze the key, which is the input of a key-value storage engine, for further indexing. This reduces excessive write amplification and improves performance. We implement our optimization scheme in LevelDB and use the workload of the TPCx-IoT benchmark to evaluate our proposed scheme. From experimental results we show that our proposed technique achieves up to 21 times better than the existing scheme, and this shows that the proposed technique can perform high-speed data ingestion in industrial IoT environments.
Journal of the Korea Institute of Information Security & Cryptology
/
v.17
no.1
/
pp.41-55
/
2007
The certificate is used to confirm and prove the user's identity in online finance and stocks business. A user's public key is stored in the certificate(for e.g., SignCert.der) and the private key, corresponding to public key, is stored in the private key file(for e.g., SignPri.key) after encryption using the password that he/she created for security. In this paper, we show that the certificate, deleted by the commercial certificate software, can be recovered without limitation using the commercial forensic tools. In addition, we explain the problem that the private key encryption password can be detected using the SignCert.der and the SignPri.key in off-line and propose the countermeasure about the problem.
Recently, the cloud technology has made dynamical network changes by enabling the construction of a logical network without building a physical network. Despite recent research on the cloud, it is necessary to study security functions for the identification of fake virtual network functions and the encryption of communication between entities. Because the VNFs are open to subscribers and able to implement service directly, which can make them an attack target. In this paper, we propose a virtual public key infrastructure mechanism that detects a fake VNFs and guarantees data security through mutual authentication between VNFs. To evaluate the virtual PKI, we built a management and orchestration environment to test the performance of authentication and key generation for data security. And we test the detection of a distributed denial of service by using several AI algorithms to enhance the security in NFV.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.18
no.4
s.119
/
pp.379-388
/
2007
This paper presents a real-time respiration and heartbeat detector comprised of a 1.6 GHz single-channel Doppler sensor and analog/digital signal processing block for remote vital sign detection. The RF front end of the Doppler sensor consists of an oscillator, mixer, low noise amplifier, branch-line hybrid and patch antenna. We apply artificial transmission lines(ATLs) to the branch-line hybrid, which leads to a size reduction of 40 % in the hybrid, while its performance is very comparable to that of a conventional hybrid. The analog signal conditioning block is implemented using second order Sallen-Key active filters and the digital signal processing block is realized with a LabVIEW program on a computer. The respiration and heartbeat detection is demonstrated at a distance of 50 cm using the developed system.
Penicillium expansum causes blue mold rot, a prevalent postharvest disease of pome fruit, and is also the main producer of the patulin. However, knowledge on the molecular mechanisms involved in this pathogen-host interaction remains largely unknown. In this work, a two-dimensional gel electrophoresis-based proteomic approach was applied to probe changes in P. expansum 3.3703 cultivated in apple juice medium, which was used to mimic the in planta condition. The results showed that the pH value and reducing sugar content in the apple juice medium decreased whereas the patulin content increased with the growing of P. expansum. A total of 28 protein spots that were up-regulated in P. expansum when grown in apple juice medium were identified. Functional categorization revealed that the identified proteins were mainly related to carbohydrate metabolism, secondary metabolism, protein biosynthesis or degradation, and redox homeostasis. Remarkably, several induced proteins, including glucose dehydrogenase, galactose oxidase, and FAD-binding monooxygenase, which might be responsible for the observed medium acidification and patulin production, were also detected. Overall, the experimental results provide a comprehensive interpretation of the physiological and proteomic responses of P. expansum to the host plant environment, and future functional characterization of the identified proteins will deepen our understanding of fungi-host interactions.
To measure atmospheric temperature, water vapor, and aerosol simultaneously, an efficient multi-function Raman lidar using an ultraviolet-wavelength laser has been developed. A high-performance spectroscopic box that utilizes multicavity interference filters, mounted sequentially at small angles of incidence, is used to separate the lidar return signals at different wavelengths, and to extract the signals with high efficiency. The external experiments are carried out for simultaneous detection of atmospheric temperature, water vapor, and aerosol extinction coefficient in Beijing, under clear and hazy weather conditions. The vertical profiles of temperature, water vapor, and aerosol extinction coefficient are analyzed. The results show that for an integration time of 5 min and laser energy of 200 mJ, the mean deviation between measurements obtained by lidar and radiosonde is small, and the overall trend is similar. The statistical temperature error for nighttime is below 1 K up to a height of 6.2 km under clear weather conditions, and up to a height of 2.5 km under slightly hazy weather conditions, with 5 min of observation time. An effective range for simultaneous detection of temperature and water vapor of up to 10 km is achieved. The temperature-inversion layer is found in the low troposphere. Continuous observations verify the reliability of Raman lidar to achieve real-time measurement of atmospheric parameters in the troposphere.
In this study, Developing high resolution camera and Social Network Service sharing image can be easily getting images, it cause about taking fingerprints to easy from images. So I present solution about prevent to taking fingerprints. this technology is develop python using to opencv, blur libraries. First of all 'Hand Key point Detection' algorithm is used to locate the hand in the image. Using this algorithm can be find finger joints that can be protected while minimizing damage in the original image by using the coordinates of separate blurring the area of fingerprints in the image. from now on the development of accurate finger tracking algorithms, fingerprints will be protected by using technology as an internal option for smartphone camera apps from high resolution images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.