• Title/Summary/Keyword: Detection Key

Search Result 1,206, Processing Time 0.027 seconds

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

A New Anchor Shot Detection System for News Video Indexing

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.217-220
    • /
    • 2007
  • In this paper, we present a new anchor shot detection system which is a core step of the preprocessing process for the news video analysis. The proposed system is composed of four modules and operates sequentially: 1) skin color detection module for reducing the candidate face regions; 2) face detection module for finding the key-frames with a facial data; 3) vector representation module for the key-frame images using a non-negative matrix factorization; 4) anchor shot detection module using a support vector data description. According to our computer experiments, the proposed system shows not only the comparable accuracy to the recent other results, but also more faster detection rate than others.

  • PDF

Detection for Operation Chain: Histogram Equalization and Dither-like Operation

  • Chen, Zhipeng;Zhao, Yao;Ni, Rongrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3751-3770
    • /
    • 2015
  • Many sorts of image processing software facilitate image editing and also generate a great number of doctored images. Forensic technology emerges to detect the unintentional or malicious image operations. Most of forensic methods focus on the detection of single operations. However, a series of operations may be used to sequentially manipulate an image, which makes the operation detection problem complex. Forensic investigators always want to know as much exhaustive information about a suspicious image's entire processing history as possible. The detection of the operation chain, consisting of a series of operations, is a significant and challenging problem in the research field of forensics. In this paper, based on the histogram distribution uniformity of a manipulated image, we propose an operation chain detection scheme to identify histogram equalization (HE) followed by the dither-like operation (DLO). Two histogram features and a local spatial feature are utilized to further determine which DLO may have been applied. Both theoretical analysis and experimental results verify the effectiveness of our proposed scheme for both global and local scenarios.

Accurate Pig Detection for Video Monitoring Environment (비디오 모니터링 환경에서 정확한 돼지 탐지)

  • Ahn, Hanse;Son, Seungwook;Yu, Seunghyun;Suh, Yooil;Son, Junhyung;Lee, Sejun;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

Automatic Detection of Dead Trees Based on Lightweight YOLOv4 and UAV Imagery

  • Yuanhang Jin;Maolin Xu;Jiayuan Zheng
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.614-630
    • /
    • 2023
  • Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.

Analysis of Laser-protection Performance of Asymmetric-phase-mask Wavefront-coding Imaging Systems

  • Yangliang, Li;Qing, Ye;Lei, Wang;Hao, Zhang;Yunlong, Wu;Xian'an, Dou;Xiaoquan, Sun
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Wavefront-coding imaging can achieve high-quality imaging along with a wide range of defocus. In this paper, the anti-laser detection and damage performance of wavefront-coding imaging systems using different asymmetric phase masks are studied, through modeling and simulation. Based on FresnelKirchhoff diffraction theory, the laser-propagation model of the wavefront-coding imaging system is established. The model uses defocus distance rather than wave aberration to characterize the degree of defocus of an imaging system. Then, based on a given defocus range, an optimization method based on Fisher information is used to determine the optimal phase-mask parameters. Finally, the anti-laser detection and damage performance of asymmetric phase masks at different defocus distances and propagation distances are simulated and analyzed. When studying the influence of defocus distance, compared to conventional imaging, the maximum single-pixel receiving power and echo-detection receiving power of asymmetric phase masks are reduced by about one and two orders of magnitude respectively. When exploring the influence of propagation distance, the maximum single-pixel receiving power of asymmetric phase masks decreases by about one order of magnitude and remains stable, and the echodetection receiving power gradually decreases with increasing propagation distance, until it approaches zero.

A Design of ETWAD(Encapsulation and Tunneling Wormhole Attack Detection) based on Positional Information and Hop Counts on Ad-Hoc (애드 혹 네트워크에서 위치 정보와 홉 카운트 기반 ETWAD(Encapsulation and Tunneling Wormhole Attack Detection) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.73-81
    • /
    • 2012
  • This paper proposes an ETWAD(Encapsulation and Tunneling Wormhole Attack Detection) design based on positional information and hop count on Ad-Hoc Network. The ETWAD technique is designed for generating GAK(Group Authentication Key) to ascertain the node ID and group key within Ad-hoc Network and authenticating a member of Ad-hoc Network by appending it to RREQ and RREP. In addition, A GeoWAD algorithm detecting Encapsulation and Tunneling Wormhole Attack by using a hop count about the number of Hops within RREP message and a critical value about the distance between a source node S and a destination node D is also presented in ETWAD technique. Therefore, as this paper is estimated as the average probability of Wormhole Attack detection 91%and average FPR 4.4%, it improves the reliability and probability of Wormhole Attack Detection.

Rule-Based Anchor Shot Detection Method in News Video: KBS and MBC 9 Hour News Cases (규칙기반 뉴스 비디오 앵커 TIT 검출방법: KBS와 MBC 9시 뉴스를 중심으로)

  • Yoo, Hun-Woo;Lee, Myung-Eui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • In this paper, an anchor shot detection method, which is a basic technology for managing news videos for index and retrieval purposes is proposed. To do that, two most popular news program such as 'KBS 9 Hour News' and 'MBC 9 Hour News' are analyzed and 4-step rule based detection method is proposed First, in the preprocessing, video shot boundaries are detected and the 1st frame of each shot is extracted as a key frame. Then, the detected shot is declared as an anchor shot, if all the following 4 conditions are satisfied. 1) There is an anchor face in the key frame of a shot. 2) Spatial distribution of edges in the key frame is adequate. 3) Background color information of the key frame is similar to the color information of an anchor model. 4) Motion rate in the shot is low. In order to show the validity of the proposed method, three 'KBS 9 Hour News' and three 'MBC 9 Hour News', which have total running time of 108 in minute and are broadcasted at different days, are used for experiments. Average detection rates showed 0.97 in precision, 1.0 in recall, and 0.98 in F-measure.

  • PDF

Microbial Floral Dynamics of Chinese Traditional Soybean Paste (Doujiang) and Commercial Soybean Paste

  • Gao, Xiuzhi;Liu, Hui;Yi, Xinxin;Liu, Yiqian;Wang, Xiaodong;Xu, Wensheng;Tong, Qigen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1717-1725
    • /
    • 2013
  • Traditional soybean paste from Shandong Liangshan and Tianyuan Jiangyuan commercial soybean paste were chosen for analysis and comparison of their bacterial and fungal dynamics using denaturing gel gradient electrophoresis and 16S rRNA gene clone libraries. The bacterial diversity results showed that more than 20 types of bacteria were present in traditional Shandong soybean paste during its fermentation process, whereas only six types of bacteria were present in the commercial soybean paste. The predominant bacteria in the Shandong soybean paste were most closely related to Leuconostoc spp., an uncultured bacterium, Lactococcus lactis, Bacillus licheniformis, Bacillus spp., and Citrobacter freundii. The predominant bacteria in the Tianyuan Jiangyuan soybean paste were most closely related to an uncultured bacterium, Bacillus licheniformis, and an uncultured Leuconostoc spp. The fungal diversity results showed that 10 types of fungi were present in the Shandong soybean paste during the fermentation process, with the predominant fungi being most closely related to Geotrichum spp., an uncultured fungal clone, Aspergillus oryzae, and yeast species. The predominant fungus in the commercial soybean paste was Aspergillus oryzae.

Fall Detection Based on Human Skeleton Keypoints Using GRU

  • Kang, Yoon-Kyu;Kang, Hee-Yong;Weon, Dal-Soo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.83-92
    • /
    • 2020
  • A recent study to determine the fall is focused on analyzing fall motions using a recurrent neural network (RNN), and uses a deep learning approach to get good results for detecting human poses in 2D from a mono color image. In this paper, we investigated the improved detection method to estimate the position of the head and shoulder key points and the acceleration of position change using the skeletal key points information extracted using PoseNet from the image obtained from the 2D RGB low-cost camera, and to increase the accuracy of the fall judgment. In particular, we propose a fall detection method based on the characteristics of post-fall posture in the fall motion analysis method and on the velocity of human body skeleton key points change as well as the ratio change of body bounding box's width and height. The public data set was used to extract human skeletal features and to train deep learning, GRU, and as a result of an experiment to find a feature extraction method that can achieve high classification accuracy, the proposed method showed a 99.8% success rate in detecting falls more effectively than the conventional primitive skeletal data use method.