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Abstract 
 

Many sorts of image processing software facilitate image editing and also generate a great 

number of doctored images. Forensic technology emerges to detect the unintentional or 

malicious image operations. Most of forensic methods focus on the detection of single 

operations. However, a series of operations may be used to sequentially manipulate an image, 

which makes the operation detection problem complex. Forensic investigators always want to 

know as much exhaustive information about a suspicious image’s entire processing history as 

possible. The detection of the operation chain, consisting of a series of operations, is a 

significant and challenging problem in the research field of forensics. In this paper, based on 

the histogram distribution uniformity of a manipulated image, we propose an operation chain 

detection scheme to identify histogram equalization (HE) followed by the dither-like operation 

(DLO). Two histogram features and a local spatial feature are utilized to further determine 

which DLO may have been applied. Both theoretical analysis and experimental results verify 

the effectiveness of our proposed scheme for both global and local scenarios. 
 

 

Keywords: Digital forensics; operation chain detection; histogram equalization; dither-like 

operation 
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1. Introduction 

With the development of multimedia and network techniques in the last two decades, digital 

media and social networks have become prevalent. The popularization of portable instruments 

and social software accelerates these tendencies in daily life. From these digital media, we can 

acquire news, entertainment and advertising information, etc. Currently, digital media play a 

key role in making important decisions in news media, law enforcement and government 

organizations. However, numerous image editing softwares can be used to modify digital 

images easily, which makes the authenticity of digital media significant and to-be-proved. 

Therefore, digital forensics techniques are emerging to meet the urgent demand.  

   The primary goals of digital image forensics are to determine whether an image is forgery 

[1, 2] and, further, to reveal the entire processing history [3]. A number of researchers have 

exploited many distinct fingerprints to detect specific manipulations [4], e.g., resampling [5, 6, 

7], median filtering [8, 9], contrast enhancement [10, 11], JPEG compression [3], etc. A large 

number of operation detection studies concentrate on designing a specific detector to reveal a 

specific single operation, while an image may have undergone a series of operations (an 

operation chain) in real forensic scenarios.  

   Operation chain detection is a complex and challenging problem. The features of 

sequential different operations coexist and affect each other, and the types and order of the 

operations are hardly detectable in the results. A straightforward detection scheme consists of 

applying state-of-the-art single operation detection methods separately in the operation chain 

scenario. The success of this scheme relies on the robustness of the single operation detectors 

against subsequent operation. M.C. Stamm et al. [12] proposed a conditional fingerprint to 

determine the order of operations consisting of contrast enhancement followed by resizing. 

For an image undergone contrast enhancement followed by resizing, the conditional 

fingerprint is extracted from the pixels that are preserved untouched after resizing. In other 

words, the conditional fingerprint is equivalent to the well-known fingerprint of contrast 

enhancement [10]. Because the original fingerprint of contrast enhancement lacks robustness, 

this method is sensitive to the scaling factor, which influences the number of the pixels 

reserved contrast enhancement feature. A reverse engineering method has been developed to 

detect another operation chain: double JPEG interposed by resizing [16]. Their method is 

based on the observation that a decompressed JPEG image trends to be the near lattice 

distribution (NLD), which is maintained after resizing and subsequent recompression. For 

each estimated resizing factor, the tested image was reversely resized, and a measure of the 

NLD was computed. Images with an NLD value above a specific threshold are judged to have 

undergone this operation chain. For discriminating different image sources in steganalysis, [13] 

proposed a framework consisting of existing JPEG decompressed identifier followed by two 

corresponding steganalyzers. 

An alternate scheme for operation chain detection consists of modeling the change of the 

distinct features introduced by one operation due to other operations, even exploiting those 

new distinct features of the operation chain. Conotter, V. et al. [14] observed that the DCT 

coefficients of an image, which has undergone JPEG followed by linear filtering, present a 

specific probabilistic distribution. As a result, the operation chain (JPEG followed by linearly 

filtering) can be detected by measuring the distance between the DCT distribution of derived 

models and the actual distribution of the tested image. The authors make the assumption that 

the compression quality factors are known as a priori. To overcome this shortcoming, a set of 
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features extracted from the DCT distribution was used to train a classifier to detect the same 

operation chain [15]. P. Ferrara et al. [17] applied the peak-to-valley artifact and specific 

distribution of the first digit of DCT coefficients to identify the operation chain, i.e., double 

JPEG interposed by contrast enhancement. In this chain a linear contrast enhancement is 

applied to each DCT coefficient of the JPEG image, with the result that the DCT distribution 

presents a periodicity related to the parameter of the contrast enhancement.  

   In this paper, we focus on detecting the operation chain consisting of histogram 

equalization and a dither-like operation, i.e., HE-DLO. HE is a general image editing 

operation and a step in creating forgery photos, which is often used to enhance the details of 

the lighter or darker regions of an image. To create a forgery image, some post-processing, 

such as filtering and resampling, may need to be performed after applying HE to make the 

image more consistent, and the HE image is usually stored in JPEG format. These operations, 

including filtering, resampling and JPEG compression, etc., have the common characteristic 

that these operations result in dithered gray values. Thus, some forgery images created in this 

manner can be identified by detecting the HE-DLO operation chain. 

More specifically, we will analyze the difference between the histogram of an image that 

has undergone HE and that of an image manipulated by the HE-DLO. We observe that 

applying DLO to a histogram equalized image results in a more uniform histogram effect, 

which can be used to develop the fingerprint of the HE-DLO operation chain. Two features are 

proposed to describe the specific fingerprints, i.e., the uniformity and centroid of the 

histogram, to determine if such an operation chain exists. Then, the combination of our two 

features and the local binary pattern (LBP) feature can further identify the specific DLO that 

has been utilized. Our scheme can be applied to cut-and-paste forgery detection to estimate the 

location of the tampered region.  

The rest of the paper is organized as follows. In Section 2, we present the histogram 

character of the HE-DLO operation chain. We analyze the histogram characteristics of two 

cases, HE and the HE-DLO operation chain in Section 3 and then propose our features to 

detect the operation chain in Section 4. In Section 5, we present the performance result of the 

new approaches for detecting both globally and locally applied HE-DLO. Finally, we 

conclude this paper in Section 6. To simplify the notation, we denote the histogram-equalized 

image and the image that has undergone HE-DLO as the HE image and HE-DLO image, 

respectively. 

2.  Character of HE-DLO Chain 

The aim of this work is to study the trace left behind due to the HE-DLO operation chain. We 

will firstly review the HE operation. Contrast enhancement can be effectively used not only to 

improve the lightness and darkness of overexposed and underexposed images but also to 

preprocess an image or a contiguous set of pixels to create a forgery image. Widely used HE is 

a specific contrast enhancement operation; it has the advantage of making gray-level values 

span the entire gray range automatically without requiring a parameter option. HE is 

essentially a gray value mapping from the pixel values in the original image to that in the HE 

image using the cumulative distribution function (CDF). It can be calculated according to the 

following equation: 
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where )(round  denotes the rounding function;  )(nhX  is the n th bin of the gray-level 

histogram of the original image, i.e., the number of pixels equal to n ; and N  is the total 

number of pixels; yx,  are the gray values in the original and HE image, respectively. Given 

an image, pixel-level x  is mapped to pixel-level y , which is determined by the number of 

pixels corresponding to gray value less than or equal to x  in the original image. Fig. 1 (a) and 

(b) indicate the gray-level histogram of the Lena image and its HE version. 

 
Fig. 1. Gray level histogram of (a) a Lena image and (b) the HE version. The histogram of (c) the 

original image that has undergone uniform noise and that of (d) the HE image manipulated by uniform 

noise, where ]1,1[～ unoise . The histogram of the HE image manipulated by (e) median filter 3×

3 and by (f) gamma transformation (r=1.7). 

 

After being enhanced by HE, the image is likely to be manipulated by DLO unconsciously 

or maliciously [18]. Specifically, each sample may be altered to a minor degree or recalculated 

with the consideration of adjacent samples by DLO operation. For the latter, because of the 

high correlation of adjacent pixels, the recalculated pixel should be similar to the original one. 

These two cases are equivalent to introducing a dither to the pixel. Therefore, the 

corresponding gray levels are dithered in the histogram. Both low-pass (LP) and high-pass 

(HP) filters, e.g., Average, Gaussian and Laplacian filters, possess this effect. Even 

Resampling and JPEG belong to these types of operation. The inevitable processing of these 

two operations, i.e., interpolation and quantization, separately play a common role in dithering 

the pixel value. 

   We model the process of applying DLO as adding uniformly distributed noise over the 

interval [-1, 1]. Fig. 1 (a)-(d) illustrates the histograms of the Lena image, the HE version, the 

adding uniformly distributed noise version and the HE image manipulated by adding 

uniformly distributed noise. From Fig. 1 (b), we observe that the histogram has been stretched 

to span all possible gray value but still keep the envelope similar to that of the original one. As 

indicated in Fig. 1 (c), adding a weak uniformly distributed noise to the original image is not a 

(e) (f) 

(a)  (b)  (c)  

(d) 
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valid way of changing the envelope of the histogram. In Fig. 1 (d), although the histogram 

retains the shapes of the highest peaks, an approximately uniform distribution histogram 

emerges. The same phenomenon can be found if the other DLO is applied to the HE image. It 

seems that HE images followed by a post-operation have a more uniform histogram. 

Nevertheless, not all post-operations following HE can lead to a uniform histogram, e.g., 

Median Filtering and the Pixel value mapping operation. Fig. 1 (e) and (f) display the 

histograms of the HE image manipulated by median filter and gamma correction, respectively. 

Their envelopes remain similar to that of the HE image. Therefore, the operation chain 

consisting of HE followed by DLO leads to the generation of the uniform histogram. In the 

next section, we will analyze and quantify this distinct fingerprint. 

3. Histogram Distribution Analysis of HE and HE-DLO images 

The gray-level histogram of an unaltered image can be determined based on the light intensity 

reflected from the real world. It can be proven that its histogram is interpolatably connected 

[10], but it cannot be proven to exhibit a uniform distribution. Moreover, except for gray value 

mapping, general operations change the histogram distribution only minimally and cannot 

increase the uniformity of the histogram. To the best of our knowledge, HE can alter the 

histogram distribution and bring the histogram close to the uniform distribution. We compare 

the capability to equalize the histogram between the HE operation and HE-DLO operation 

chains. In this section, we study the histogram uniformity induced in these two cases. The 

similarities between histogram distributions and the ideal uniform distribution are analyzed 

individually. Specifically, the general histogram bin is estimated and applied to compare to the 

bin of the ideal uniform distribution histogram. 

3.1 The Histogram Uniformity of the HE Image 

The uniform histogram is a basic assumption in the HE detection method [10]; in fact, the 

disappearance and merging of the gray-level often make the histogram far from uniform [11]. 

The authors of [19] also indicate that it cannot be proved, in general, that histogram 

equalization will produce a uniform distribution histogram. Thus, the histogram uniformity of 

the HE image remains an interesting and significant problem. 

    Without loss of generality, we take an example to demonstrate the gray-level mapping from 

the original image to the HE image. We denote Xh  and Yh  as the histograms of the original 

image and HE image. It can be seen from Fig. 2 (a) that one or several gray bins in the 

histogram Xh  are mapped or merged to one bin in Yh . Take three adjacent nonzero 

gray-levels in Yh , i.e., lkk yy , and qky   as examples, the former two gray-levels can be 

calculated by Eq. (1) as follows: 
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where k  is the maximum possible gray-level mapped to ky , l  is the difference between ky  

and lky  , 
 Zml, , and mk   is the maximum possible gray-level mapped to lky  . It 
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is similar to Fig. 2 (a),  ky  is mapped by at least the gray-level k , and lky   is mapped by the 

gray-levels mkk  ,,1  . 

In other words, the bins )(,),1( mkhkh XX    all contribute to forming the bin lky  . 

Meanwhile, some zero-height bins, i.e., the gap bin, are introduced in ky . Specifically, if 

)1( khX  is sufficiently large, the interval between ky  and lky   may be larger than one, 

i.e., 2l , one or more gaps between )( kY yh  and )( lkY yh   are introduced, as indicated in 

Fig. 2 (b).  

To investigate the histogram of the HE image, the following two easily proven lemmas are 

first considered: 

Lemma 1: Given Ra   and ZA   

5.05.0)(  AaAAaround                                      (4) 

Lemma 2: Given Rba ,  and ZCA ,  

Cbaround  )(  and Aaround )( , Hence 

11  ACbAC                                                      (5) 

Given lyy klk  ,  Based on Eq. (2), Eq. (3) and inequality (5), we obtain 
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We normalize the histogram as )( lkY yH  ,  

255/)1()(255/)1(   lyHl lkY                                      (8) 

Thus, the probability range of lky   is related to l , increasing with the increase of l . 

In probability theory and statistics, the discrete uniform distribution takes on a finite 

number of values with equal probabilities. Each bin of the ideal uniform histogram with 256 

gray levels has probability 1/256. The difference between each bin of the normalized 

histogram of the HE image and that of the ideal uniform histogram can be analyzed as follows. 

According to the relationship between the )(yH Y  and 1/256, we divide the bins in Yh  into 

three types, i.e., the gap bin, the normal bin and the high bin, denoted as 
ng yy , and 

hy , 

respectively. If 0)( yH Y , we call the bin 
gy . If )255/2,0()( yH Y , we call the bin 

ny . Because the high bin is mapped by at least one bin in the original image histogram, 

overhigh bins are rare. The average numbers of bins larger than 4/255 in the normalized 

histogram are calculated from the 1338 image from the UCID database. The result indicates 

that only 1% of the 256 bins are larger than 4/255. Thus, we denote 
hy  as 

)255/4,255/2[)( yH Y . 
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Because the height value of 
ny  bin distributes around 1/256, the normal bins bring the 

histogram close to uniform distribution. Although HE enlarges the gray-level range, it cannot 

increase the gray-level; thus, a number of zero bins are introduced in the histogram of the HE 

image. Additionally, 
gy  is less than 1/256, and 

hy  is far greater than 1/256. Consequently, 

the gap and high bins make the histogram of the HE image far from a uniform distribution. The 

number of these three type bins for the Lena image manipulated by HE are calculated and 

displayed in the first row of Table 1. The sum of the gap and high bins is approximately half of 

all 256 bins. As indicated in Fig. 1 (b), the histogram of the HE image maintains a similar 

envelope to the original image.  

 
Table 1. Numbers of three types of the histogram bins of the HE and HE-RS Lena image 

 

Application 

Scenario 

Number of 

normal bin 

Number of 

gap bin 

Number of 

high bin 

HE 137 84 35 

HE-UN 256 0 0 

 

 
Fig. 2. Example graph indicating (a) gray-level mapping of the original image to the HE image, (b) the 

introduction of 
gy  into the histogram of the HE image and (c) the variation of 

gy  in the histogram of 

the HE-UN image. 
 

3.2 The Histogram Uniformity of the HE-DLO Image 

For the sake of simplicity, we model the DLO application process as the addition of noise to 

investigate the variation of the histogram uniformity of the HE-DLO image. However, adding 

strong noise can destroy both perceptual image quality and the histogram, making the 

histogram uniform. Hence, we select weak noise, which cannot ruin the histogram distribution 

by itself. Therefore, we take into account the addition of uniformly distributed noise with the 

interval [-1, 1], i.e., ]1,1[～ unoise . The noise makes each of the gray value z  spread by 
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the uniform distribution over the range ]1,1[  zz . The probabilities of gray values 

falling into 1z th bin, z th bin and 1z th bin are 1/4, 1/2 and 1/4, respectively. We 

abbreviate uniform distribution noise as UN, the operation chain in which the image is 

manipulated by HE and then by UN as is abbreviated as HE-UN, and 'Yh  represents the 

histogram of the HE-UN image.  

We use 2l  as a concrete example to analyze the bins in 'Yh . The )( g
Y yh  between ky  

bin and lky   bin is transformed to )('
g

Y yh  due to the addition of UN, as indicated in Fig. 2. 

(c). The )('
g

Y yH  can be calculated as follows: 

)(
4

1
)(

4

1
)(' lkYkY

g
Y yHyHyH                                       (9) 

In this case, the inequality (8) can be rewritten as 

255/3)(255/1  lkY yH                                          (10) 

According to whether the left adjacent bin of ky  is normal or high,  ky  can be determined 

to belong to one of the following two ranges. If ky  is a normal bin, then 

255/2)(0  kY yH                                                   (11) 

Substituting inequality (10) and (11) into formula (9), yields 

)2554/(5)()2554/(1 '  g
Y yH                                   (12) 

If ky  is a high bin, then  

255/4)(255/2  kY yH                                              (13) 

Substituting inequality (10) and (13) into Eq. (9), we can obtain 

)2554/(7)()2554/(3 '  g
Y yH                                   (14) 

Eq. (12) and Eq. (14) indicate that the probability of the gap bin in 'Yh  is closer to 1/256 

than that in Yh .  

From the definition of 
hy , it can be easily concluded that 

hy  must follow 
gy . We 

assume that lky   is 
hy . The )('

h
Y yH can be calculated in terms of whether the right 

adjacent bin  qky   is a gap. 

If qky   is a gap bin, 2/)()('
h

Y
h

Y yHyH   

 255/2)(255/1 '  h
Y yH ,                                         (15) 

If qky   is not a gap, qky   is a normal bin, so 

 4/)(2/)()('
n

Y
h

Y
h

Y yHyHyH   

 )2552/(5)(255/1 '  h
Y yH                                     (16) 

The value of )('
n

Y yH  can be estimated in the same manner. The possible probability 

range of normal bins varies slightly according to the two adjacent bins. With the addition of 
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the inequality (12), (14), (15) and (16), we can determine that the gray-level bins in the 

HE-UN image normalized histogram are all clustered at the 1/256 than that in the HE image, 

as indicated in Fig. 3. The probabilities of three types of bin in the HE image and HE-UN 

image are indicated as red bars and blue bars, respectively. Although the probability range of 

the normal bin is enlarged to a certain degree, the probability ranges of the other two bins are 

closer to the ideal uniform distribution after applying HE-UN. The numbers of these three 

types of bin are calculated for the Lena image that has undergone HE-UN and displayed in the 

second row of Table 1. The gap and high bins are all transformed to normal bins. The 

interference of the gap and high bins is drastically reduced by HE-UN. 
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Fig. 3. The probabilities of the normal, gap and high bin in the HE image and HE-UN image are 

indicated as red bars and blue bars, respectively. The purple line is the uniform distribution baseline. 
 

Consequently, the histogram of the HE-DLO image is closer to the uniform distribution 

than the HE image. The theory studied in this section can be generalized to continuous gap 

bins presented in the histogram of the HE image. As long as the strength of the noise is 

sufficiently high, the gap bins can be filled, and the high bins can be partially removed. 

Additionally, given a Gaussian noise with δ=0.5, the probabilities of gray values falling into 

each bin and its two adjacent bins in the gray-level histogram are 68.2%, 15.7% and 15.7% 

(according to the three sigma rule), respectively. The tendency of the uniform histogram can 

be obtained in the same manner. 

After manipulated by HE-DLO operation chain, the gap and high bins are undermined, and 

a more likely uniform histogram emerges due to the combination of two operations. The 

uniform histogram can be used as an identifying feature to detect the HE-DLO operation 

chain. 

4. Proposed forensic approach 

According to the above results and discussions, we propose two histogram features to 

characterize the uniformly distributed histogram; and then, a local spatial feature is proposed 

to capture the statistical trace left by every operation chains consisting of the HE and a 

different DLO. These features are described as follows. 

4.1 Uniform Histogram Metric 

Because the digital images have discrete quantities and the general operation cannot perform 
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as one-for-many gray mapping, even HE cannot leads to a uniform histogram, as proven above. 

We believe that the most likely uniform distribution histogram is a specific characteristic of 

HE-DLO. The mean absolute difference between the normalized histogram and the constant 

value 1/256 is calculated to capture this feature. The scalar metric of uniform histogram is 

defined as 

}}256/)(,0))(,),1(),({(|{

,|256/1/)(|
256

1

Nwhwhwhwhexcludingw

NshMUH
s



 



               (17) 

where )(sh  is the s th bin of the gray-level histogram of the image and N  is the total 

number of pixels in the image. 1  and    are the thresholds chosen to eliminate the 

numbers of continuous gap bins and the height of overhigh bins to reduce the disturbance of 

bins far from uniform distribution. Because the DLO dithering range is limited, not all 

continuous gaps can be filled, especially gaps without nonzero adjacent bins. The overhigh 

bins directly corresponding to the continuous gaps are difficult to transform to normal bins 

after weak dithering. Additionally, these two cases can also be introduced by the saturation 

effect, which causes an impulsive peak in the histogram of original image. Thus, the histogram 

of a saturated image that has undergone HE-DLO contains a number of continuous gaps and 

overhigh bins, resulting in a higher MUH than the ideal uniform histogram. Thus, our scheme 

must eliminate these sources of interference. After calculating the MUH for a suspect image, 

the detection result can be obtained by a thresholding classification. The images with MUH 

values less than the decision threshold are to be judged to be HE-DLO images. 

4.2 Histogram Centroid 

Fig. 4 illustrates two histograms of the Lena image that has undergone HE and the addition of 

Gaussian noise using standard deviations ofδ=0.5 and 0.8. In Fig. 4 (a) the gaps have been 

partially filled, and the high bins have been partially removed, producing what we refer to as a 

comb-shaped histogram. Simultaneously, the envelope of the histogram tends toward the 

uniform distribution. As the strength of the noise increases, the envelope of the histogram 

approaches a similar uniform distribution, as shown in Fig.4 (b). Based on this observation, we 

believe that the comb-shaped histogram is an additional distinct fingerprint of HE-DLO. The 

comb shape is a transitional shape between the histogram of the HE image and the HE-DLO 

image. The capability to fill the gap and remove the peak is constrained such that the tendency 

of the uniform histogram is obstructed, which makes the MUH feature unremarkable.  

 
Fig. 4. Gray-level histogram of the Lena image that has undergone HE and Gaussian noise with (a) δ

=0.5 and (b) δ=0.8, 
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To characterize this specific feature, we consider the histogram to be a thin plate with 

uniform density. The histogram centroid (HC) is introduced to measure the height of the 

histogram envelope [20]. For the histogram of the unaltered image, its height can be preserved 

by one-for-one gray-level mapping, and it can even be increased by many-for-one mapping 

after manipulated by HE. The gap bins does not contribute to the alteration of this height. 

Therefore, the HC of the HE image histogram is higher than that of the unaltered image. The 

entire histogram decreases to an approximately uniform distribution due to HE-DLO, such that 

the lower HC indicates the characteristic fingerprint of HE-DLO. The rank of the low HC will 

be proven later. In addition, as with the histogram of any image, the distance between the 

centroid and the y axis is approximately the center of [0, 255]; hence the x coordinate of HC 

cannot be a unique fingerprint of the HE-DLO. The y coordinate of HC are selected to be a 

distinct fingerprint of the HE-DLO, which is defined as 

))(2/()(
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2 

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n

i

iHiHHC                                         (18) 

where n is the maximum possible gray level with n=255, and )(iH  is the i th bin of the 

normalized histogram. Because 1)(
0

 

n

i
iH , we can rearrange the HC expression as 

follows: 
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iHHC                                                       (19)  

Minimizing HC can reveal the relationship between each bin’s probability and the ideal 

uniform distribution. This optimization problem has the following structure: 
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Using Lagrange multipliers, this problem can be converted into an unconstrained 

optimization problem: 
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
n

i

n

i

iHiHnHHHL                        (21) 

We compute the partial derivative of the unconstrained problem with respect to each 

variable and let them equal zero. The solutions of these equations are 

)1/(1)}(,),1(),0({  nnHHH  . Thus, the centroid of the uniform distribution 

histogram should decrease to the lowest height from the x axis. Therefore, the lower HC 

indicates a histogram is closer to uniform distribution.  

 To distinguish between the histogram of the HE and HE-DLO images, we preprocess the 

histogram to fill the gap bin with 256/  and then remove bins that are far greater than their 

adjacent bins using a min filter with window size 1 . Finally, the decision threshold can 

be selected according to the user’s expectation of the accepted false alarm rate. An image with 

an HC less than the decision threshold is to be judged to be an HE-DLO image. 
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4.3 LBP Feature 

Using the MUH, HC or LR classifier, the HE-DLO operation chain can be identified. However, 

the specific DLO that has been applied cannot be determined using only the histogram feature. 

In this subsection, a local spatial feature is considered to capture the unique traces 

corresponding to different DLOs. Because a DLO can dither the gray value to a minor degree, 

many image operations can leave footprints in bit planes as well as across bit planes [22]. We 

infer that the DLO might leave distinct traces mostly in the less-significant bit planes. Similar 

to spatial filtering, image manipulated by DLO can be modeled as a convolution with a filter 

kernel in the local region. We regard the footprint left by DLO as a local spatial pattern, which 

can be characterized using LBP [23] features. LBP features are histograms characterized by 

the occurrence of specific local patterns. Consider a local neighborhood involving the center 

pixel cg  and its corresponding p  equally spaced pixels )1,,0(  Ppg p   on a circle 

of radius R . The local neighborhood centered at every pixel is transformed into a binary 

pattern using the threshold value of the gray value of the center pixel. Then, the LBP number 

of the centered pixel is computed by weighting p directional neighbors as 







1

0, 2)(
P

p

p
cpRP ggLBP  , where )(  is the indicator function. For each image a 

p2 -bin histogram can be obtained based on these LBP numbers. When 1,8  RP , 256 

possible binary patterns could be calculated, and a 256-bin histogram is generated per image. 

For example, Fig. 5 displays the 256-bin LBP histograms of the original image and those of its 

manipulated versions. Notice that the LBP histograms of different HE-DLO have significant 

discriminating characteristics. Considering that the application DLO is equivalent to a 

convolution operation, the majority of the transformation kernels have a circularly symmetric 

architecture. We select the rotation-invariant LBP features i.e., 
ri
RPLBP , , to capture the unique 

footprints left by different DLO operations. 

 
Fig. 5. LBP histogram for (a) Lena image and for its HE-DLO manipulated version. (b) HE and average 

filtering with windowsize 3×3. (c) HE and resizing by 1.3. (d) HE and Laplacian filtering use 

alpha=0.4. (e) HE and JPEG with quality factor 30. 

(a)  (b)  (c)  

(d)  (e)  
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5. Experimental Results 

This section provides experimental procedures to verify the effectiveness of our proposed 

features, i.e., the MUH, HC, and LR classifier. Then, the combination of MUH, HC and LBP 

is used to train a SVM classifier using the LIBSVM tools [24]. The Uncompressed Color 

Image Database (UCID) [21] is introduced for training and testing. Without loss of generality, 

the green color layer of each of these images was used to create the training set and testing set. 

To the best of our knowledge, previous works have not addressed the issues of detecting 

HE-DLO. Therefore, we cannot compare the performance of our approaches with other 

methods. 

We process 1338 uncompressed original images (ORI) in UCID with single operations or 

HE-DLO operation chain, using different settings for the window size, variance, gamma value 

and alpha parameter, as reported in Table 2. We create sets of the images that had undergone 

single operations, i.e., HE, GC, RS, AVG, GN, LP_G, HP_L, JPEG, generated by 

manipulating images with HE, gamma correction, resizing, average filtering, Gaussian noise, 

low-pass Gaussian filtering, high-pass Laplacian filtering and JPEG compression, respectively. 

Then, the combination of ORI and these eight image sets constitute the ONE database. 

Additionally, the CHAIN database is introduced, containing the six sets of images that have 

undergone HE-DLO, i.e., HE-RS, HE-AVG, HE-GN, HE-LP_G, HP_L, HE-JPEG, which are 

generated by applying resizing, average filtering, Gaussian noise, low-pass Gaussian filtering, 

high-pass Laplacian filtering and JPEG compression to the HE images, respectively. Based on 

the capability to fill up the gap bin and remove the high bin, CHAIN is split into two parts, i.e., 

CHAIN_A and CHAIN_B, to alternatively evaluate the performance of MUH and HC. 

CHAIN_A consists of applying Gaussian noiseδ=0.3, 0.6, 0.9 and Low-pass Gaussian filter 

[3×3], [5×5]，δ=0.35, 0.4 to the HE images, and CHAIN_B is its complement. In other 

words, the histogram of an image that has undergone CHAIN_A may present a comb-shape. 

 
Table 2. Operations used to create image database 

Operation Description 

HE Histogram equalization 

GC Gamma correction γ=0.8,1.3,1.8,2.3 

RS Resizing using scaling factor s= 0.8, 1.3, 1.8, 2.3 

AVG Average [3×3], [5×5] 

GN Gaussian noiseδ=0.3, 0.6, 0.9, 1.2, 1.5 

LP_G Low-pass Gaussian filter [3×3], [5×5],δ=0.35, 0.4, 0.6, 0.9, 1.2 

HP_L High-pass Laplacian filter,α=0.2, 0.4, 0.6, 0.8, 1 

JPEG JPEG compression with quality factor 90,60,30 

5.1 MUH and HC Detection Result 

To evaluate the performance of MUH and HC for HE-DLO detection, experiments were 

performed on CHAIN_A versus ONE and CHAIN_B versus ONE, respectively. Because the 

two features are scalar, the measures of MUH or HC extracted from each testing image were 

used to judge if an image was manipulated by HE-DLO using the decision threshold. The area 

under the ROC curve (AUC) was employed to indicate the performance of our features and is 

summarized in Table 3 and Table 4. Table 3 indicates that MUH achieved its best 
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performance using 4,1   . That is to say, MUH can be extracted regardless the 

continuous gap bins with the number above two and the overhigh bins with height above 4/256. 

Under these conditions, the AUC of CHAIN_B versus ONE reached 99%, but the AUC of 

CHAIN_A versus ONE was only 85%. Additionally, the detection performance improved as 

the value of   increased and remained stable with different values of  . This result indicates 

that excluding the overhigh bin is more important than excluding the continuous zero bins; the 

former is minimally transformed, and the later can be filled easily. Table 4 indicates that HC 

achieved its best performance using 3,1   , i.e., a fill value of 1/256 and a window 

size of 1×3. As expected, the AUC of CHAIN_A versus ONE reached 98.3%, so HC can 

complement MUH. The results indicate that filling the gap bin with too large a value or min 

filtering with too large a window size introduced a disturbance that decreased the detection 

accuracy. Specifically, filling the gap bin lifted the centroid of the histogram and the min 

filtering suppressed the centroid of the histogram, which led to false negatives and false 

positives, respectively. Thus, the AUC is always approximately 93% in the case of CHAIN_B 

versus ONE. 
 

Table 3. AUC for detection of CHAIN_A vs. ONE and CHAIN_B vs. ONE using MUH 

    AUC of 

CHAIN_A vs. ONE 

AUC of 

CHAIN_B vs. ONE 

1 

2 84.7 98.5 

3 85.2 98.9 

4 85.1 99 

2 

2 84.6 98.5 

3 85.1 98.9 

4 85.1 99 

3 
2 84.5 98.5 

3 85.1 98 

 
Table 4. AUC for detection of CHAIN_A vs. ONE and CHAIN_B vs. ONE using HC 

    
AUC of 

CHAIN_A vs. ONE 

AUC of 

CHAIN_B vs. ONE 

1 

3 

98 93.4 

3 93.1 94.4 

5 86.7 93.6 

1 

5 

98.3 91.3 

3 94.5 93.3 

5 89.2 92.3 

 

To assess the suitability of the combination of our two features, i.e., MUH and HC, a logistic 

regression (LR) classifier for detecting HE-DLO was trained and implement experiments on 

CHAIN versus ONE. The hypothesis function used for LR is defined as 

)1/(1),,( zeHCMUHh  . We describe the fitting function z as  

HCMUHHCMUHHCMUHz  5
2

4
2

3210  . The 

parameter vector ),,,,,( 543210   can be estimated by minimize the cost function )(J , 
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i.e., ))(1log()1()(log()/1()(
1

)()()()( 


i

iiii xhyxhymJ  . Here the 

subscript i  is the i th sample, m  is the number of the sample, }1,0{y  is the 

classification label, and x  is a 2-dimensional feature vector consisting of MUH and HC. The 

CHAIN and ONE were separated into training and testing database, with sizes of 40% and 

60% of the corresponding database size, respectively. The LR model was iterated using the 

measures of MUH and HC extracted from the images of the training database to find the best 

parameter vector. The parameter vector and the feature vector extracted from a testing image 

can be used to determine whether it has undergone HE-DLO. Fig. 6 indicates that the LR 

classifier presents perfect performance for HE-DLO detection. 

 
Fig. 6. ROC curve for the classification of CHAIN versus ONE using LR classifier 

5.2 HE-DLO classification 

We demonstrate the performance of LBP in two scenarios. The first scenario is evaluated by 

applying different LBPs to differentiate six categories of CHAIN. We consider the various 

combinations of P, R and three LBP features, i.e., uniform LBP, rotation-invariant LBP and 

uniform rotation-invariant LBP, denoted as 
2
,
u
RPLBP , 

ri
RPLBP ,  and 

2
,
riu
RPLBP . The second 

scenario consists of the application of combined MUH, HC and LBP to differentiate seven 

classes corresponding to ONE and six categories of CHAIN. The ONE and CHAIN database 

are split into halves to generate the SVM training and testing sets. An SVM classifier with a 

Radial Basis Function (RBF) kernel was trained, and the best kernel parameters were found by 

performing a grid search using a five-fold cross-validation. 

The classification accuracy results of the first scenario are summarized in Table 5. LBP 

achieved its best performance using rotation invariance pattern features with 1,8  RP . 

Under this condition, the summary accuracy reached 86.2%. It can be observed that the 

“uniform” pattern could not characterize the structure of DLO completely; on the other hand, 

the “nonuniform” pattern possessed more information for DLO. The results confirm our 

conjecture that DLO is characterized by rotation invariance, as the process of DLO has a 

circularly symmetric architecture filter. An additional observation is that the classification 

accuracies cannot be improved by extending the range of LBP. Therefore, DLO may have left 

the majority of traces in the immediate adjacent neighborhoods of each pixel rather than the 

region away from the centered pixel. The results of the classification accuracies of the second 

scenario are displayed in Fig. 7. Although the number of ONE sets is far larger than the number 

of CHAIN sets, the classification accuracy of ONE achieves 95.4%, indicating that the feature 

combination of MUH, HC and LBP is able to differentiate the operation chain image from the 

original and single operation images very well. In addition, the combination of three features 
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achieves excellent classification accuracy for further determining which image has undergone 

HE-DLO. 

 
Table 5. Classification accuracies (%) for six HE-DLO 

LBP P,R Accuracy HE-RS HE-AVG HE-NOI HE-GB HE-LA HE-JPG 

2
,
u
RPLBP  

8,1 78.8 82.4 71.3 74.9 58.5 97.5 85.6 

12,1.5 75.2 76.5 62.6 64 68.5 92.9 77.9 

16,2 82 78.4 63.7 91.1 69.4 100 68.7 

ri
RPLBP ,  

8,1 86.2 88.2 70.7 83.1 78 97 89.3 

12,1.5 84.5 87.8 80.6 81.5 74.7 95.9 83.5 

2
,
riu
RPLBP  

8,1 75.4 76.4 4 85.3 59.9 100 66.4 

12,1.5 76.9 81.5 57.4 80.8 57.6 99.4 66 

16,2 77.6 73.8 68.2 79.5 66 99.4 65.3 

 

  

Fig. 7. Classification accuracies (%) for seven classes using the combination of MUH, HC and 
riLBP 1,8  

5.3 Application to Image Forgery Detection 

When performing the forensic detection of HE-DLO, our method can identify whether the 

full-frame image has gone through an operation chain. In real forensics scenarios, it is more 

important to authenticate an image if some operation chain has been locally applied, e.g., 

cut-and-paste forgery forensics. Two classical scenarios can occur through different 

procedures for forgery image production. The first scenario is that a region from an HE-DLO 

image is pasted onto a host image. An alternative scenario is that a region from an image 

processed by HE is pasted onto a host image; then, the composite image is manipulated by 

DLO. In these two scenarios, the tampered regions can go through HE-DLO, and the 

complement regions can remain original or undergo HE. In this subsection, the LR classifier is 

used to determine and locate the tampered region of a forged image. Then, the applied 

HE-DLO can be determined by the combination of MUH, HC and LBP.  
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Fig. 8. ROC curve obtained using different testing block size for images manipulated by HE-DLO 

 

To determine which block sizes are sufficient to implement the blockwise localization 

forgery region, we performed the following experiment. Blocks of size 300×300, 200×200 

and 100×100 were cropped from the center of each of the images from the ONE and CHAIN 

databases described at the beginning of this section. Then, each block was classified as have 

been manipulated by HE-DLO or not by the LR classifier using a variety of different 

thresholds. The ROC curves shown in Fig. 8 indicate that the HE-DLO can be relatively 

reliably detected using a block size of 300×300. As a result of indicating the global histogram 

character, the probability of detection decreases with a decreasing block size. When block size 

is equal to 100×100, the detection rate achieves a random guess. 

An example of a cut-and-paste forgery image in which the pasted region has gone through 

HE-RS is displayed in Fig. 9, along with the localized tampered region results obtained from 

our proposed forensic technique. Fig. 9(a) displays an HE image from which an object (a boy 

on the right) was cut. Fig. 9(b) displays the unaltered image into which the cut object was 

pasted. Fig. 9(c) displays the composite image, into which the resized cut object had been 

pasted with a scaling factor 0.7. Adobe Photoshop was used to composite the forged image. 

The image was segmented into overlapping pixel blocks with a size of 300×300 and a 

16-pixel interval, each of which was tested for evidence of locally applied HE-DLO. Fig. 9 (d) 

displays the results obtained by performing the classification using the LR classifier. The 

blocks corresponding to the HE-DLO are boxed and outlined in red. In this example, some 

parts of the tower present false alarm because these boxes contains varying gray levels, e.g., 

the black shadow of the tower, the tree beside the tower and the white tower body, which make 

the histogram similar to a uniform distribution. Then, the feature set of the MUH, HC and 
riLBP 1,8  extracted from the blocks highlighted by the result of the LR classifier is fed into the 

SVM classifier, which is trained in the second scenario of Section 5.3. The blocks that are 

classified into HE-RS and HE-GB are displayed in Fig. 9 (e) and (f), respectively. It can be 

observed that the main part of the tampered region has been located. In Fig. 9 (f), the 

classification result is disturbed by the texture of the boy’s sweater, which presents similar 

blur artifacts, and the possible operation chains have been reduced to two types of HE-DLO. 

Although our scheme does not resolve the problem of this example, the results we have are 

desirable. 
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Fig. 9. Image forgery detection example displaying an object cut from (a) and the histogram equalized 

image pasted into (b) another unaltered image, (c) the composite image then manipulated by AVG. 

Blocks detected as having been manipulated by HE-DLO are outlined in red boxes using pixel blocks 

300×300 (d) using LR classifier, and then the blocks are further classified as manipulated by (e) 

HE-RS and (f) HE-LP_G using the combination feature 

6. Conclusion 

In this paper, a new forensic algorithm to detect HE-DLO operation chain applied to a digital 

image has been proposed. The method is based on distinct histogram distribution and local 

spatial pattern. Two histogram features were introduced and used to propose a scheme for 

identifying whether an image has undergone an operation chain. A logistic regression 

algorithm is trained with these two features to detect HE-DLO. The combination of two 

histogram features and LBP further distinguishes the HE-DLO image from the original images 

and their single operation versions. Experiments indicated that MUH and HC provide 

excellent performance when histograms present uniform distribution and transitional shape, 

respectively. The LR classifier incorporating the advantages of MUH and HC exhibited 

perfect detection performance in two scenarios. The results indicate that the combination of 

MUH, HC and LBP is able to correctly identify traces of different HE-DLO. We extended this 

technique to a method for detecting locally applied HE-DLO and demonstrated its usefulness 

for detecting cut-and-paste forgeries. 

(a) (b) (c) 

(d) (e) (f) 
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